

Effect of sesame-tomatoes intercropping systems under different dates of sesame on improving productivity of crops

Mohamed M. Lamlom^{*1}, and Abdelgwad M. Ahmed²

Address:

¹Crop Intensification Research Department, Field Crops Research Institute, Agricultural Research Center, Egypt ²Vegetable Research Department, Horticulture Research Institute, Agricultural Research Center, Egypt *Corresponding author: *Mohamed M. Lamlom, E mail:- <u>ndr.mourad180@yahoo.com</u> Received: 24-11-2020; Accepted: 07-03-2021 ; Published: 08-03-2021 <u>10.2160</u>*

10.21608/ejar.2021.50952.1044

ABSTRACT

Field experiment was conducted at Sids Horticulture Research Station, in Beni-Suif Governorate in 2018 and 2019 summer seasons to study the effect of intercropping sesame (Shandaweel-3) with hybrid tomato (Nema 1400) in three intercropping patterns 100% tomato + (50%, 33% and 25% sesame) in addition solid planting of both crops under three sowing dates for sesame was also studied the effect on plant growth, yield attributes and yield of both crops. The experiment was implemented in a split plots design with three replications. The main plots were devoted to the previous three intercropping dates, whereas, the sub-plots were allocated to the intercropping patterns of sesame with tomato. Results indicated that intercropping patterns increased all growth characteristics and yield of tomato compared with solid planting. The yield and its components were significantly affected by different intercropping patterns in both crops. The highest tomato yields (26.033, and 27.303ton fed.-1) in the first and second seasons, respectively, were obtained when sesame was planted before tomato by 15 days for tomato with 50% from density (CS1) pattern. However, the highest yield of sesame (2.83 and 3.60 ardab per fed.⁻¹) in the first and second seasons, respectively, was obtained when sesame plants were grown before tomato by 15 days and 50% from total density, whereas, the lowest value was recorded at CS₃ pattern (1.52 and 1.82ardab fed.⁻¹), respectively. Maximum values of total land equivalent ratio (LER) (1.62 and 1.63), were observed with CS₁in both seasons, respectively. The data indicated that tomato was dominating in the first date when sesame planting before tomato by 15 days. The total or net return showed that intercropping sesame with tomato by 50% from total density were higher (LE. 41954 and 44706) compared to solid tomato (LE.32108 and 33296) or solid sesame planting (LE. 5161 and 7991). Therefore, it is recommended to grow sesame before tomatoes by 15 days, at a distance of 10 cm between gores and one plant in the grove (with a density of 50% of the total density of sesame) to obtain the highest productivity of tomato crops and the highest economic return to farmers.

Keywords: tomato, sesame planting density, Intercropping, Land equivalent ratio (LER), Aggressivity (A), Total return, Net return.

INTRODUCTION

Tomato (*Solanumlycopersicum*) is consider one of the most important vegetable crops cultivated in Egyptian, where its anual consumption is about 9.8 million tons. The average productivity is 17 ton/fed. The cultivated tomatoes area in 2017 was 395.571faddan spread over three growing seasons as follows 168878 faddan in the Winter season, 197607 faddan in summer and 29086 faddans in autumn (Bulletin of The Agricultural Statistics 2017). It was documented air and soil temperatura in fluences flowering and fruit setting in tomato by during autumn and Winter seasons in Middle and Upper Egypt. The climate in Middle and Upper Egypt is very hot in the summer with drycondition. Therefore, providing natural protection from hot weather by intercropping sesame (*sesamumindicum*) with tomato is frequently used. In Egypt, the early and late summer tomato market is from the open field planting during May up to August. During this period, temperature can exceed 35°C under field condition resulting in either non- uniform growth and por fruit yield or even completely failure of tomato cropping in a great part of the cultivated area. (Pressman *et al.*, 2002).

Intercropping tomato with other field crops is suggested to be implemented to lower production cost, maximize land utilization and raise farmers' income. Additional advantages could be obtained from associated intercropping system through higher monetary return and more stable income compared to mono-crop cultures. Therefore, investigation were conducted on protect tomato plants by intercropping some field crops with it. Abd El-Aal and Zohry (2003) indicated that intercropping maize with summer tomato gained more benef it. They found that the marketable yield of tomato has increased as a result of maize shadow, besides aving water and increasing land use productivity per unit area. Abd El-Aal and Zohry (2004) reported that faba vean intercropping with tomato system maximized irrigation water utilization through saving 31% compared to solid treatment, in addition to an increase in fruit yield and marketable fruits yield of tomato. Saeed et al.(2007) found that, during reproductive development, high temperature causes significant increase in flower drop and significant reduction in fruit set and that severely decrease fruit yield. Ibrahim et al. (2010) intercropped tomato with faba bean and obtained high tomato yield of 20.19 ton/fed, whereas solid tomato attained 14.80 ton/fed, with higher total income and máximum value of total land equivalent ratio (2.21), area time equivalent ratio (1.94) under cultivation of faba bean variety Giza 843 on fourrows on both sides of tomato beds.lbrahim et al., (2011) reported that intercropping wheat cv. Giza 168 with tomato in November 15 attained higher yield (22.28) ton fed⁻¹, compared with 12.75 ton fed-1

obtained from solid tomato. Under that system higher land equivalent ratio (2.66), total income and net return were obtained. Abd El-Hady*et al.* (2013) showed that the increasing in yield components might due to wide distance between plants under intercropping condition. (Hussain*et al.*, 2008; Mohamed *et al.*, 2013; Abd El-Gaid*et al.*, 2014) reported that intercropping tomato with other crops increased productivity, land equivalent ratio, and total income tan tomato solid crop. Abd El-Zaher et al. (2013) found that of intercropped wheat with tomato showed yield advantage compared with solid planting. Maximum value of land equivalent ratio was 2.25 and 2.21, total income and net return were obtained with four wheat rows with adding 50% mineral nitrogen fertilizer and 50% of organic fertilizer (Moussa*et al.*, 2013).

Sesame has become an important oil crop in Egypt, and it could help in reducing the great shortage in local edible oil production, but it is still difficult to compete with sunflower the as major crop in most cultivated areas. Considerable interest has been shown in growing sesame with tomatoes during the summer season. The benefits of this cropping pattern are: a) provide shade for tomatoes to prevent sun scorch which causes white spots on the surface of the fruit; b) increase the land use by producing sesame seed without significant reduction of tomato yield; c) compensate for any posible loss which could face tomato growers, e.g., disease or market price decline. Advantages of some intercropping systems have been mentioned by some investigators. The interaction between sowing date and cultivar affected significantly seed yield and its attributes, namely number of capsules/plant, plant height, seed weight/plant (Ali and Jan, 2014). Ultimately, higher yield can be achieved through suitable cultivars and optimum sowing date. Bhardwaj et al. (2014) indicated that earlier sowing date resulted in significantly higher seed yield by about 56%. Tahir et al. (2012), and Hamza and Abd El-Salam (2015). Showed that the early sowing date as an optimum date for higher yield and its attributes compared to late sowing date in sesame. Toaima et al (2004) and Haruna (2013). Reported that the merits of intercropping sesame with ground nut have been well documented by several investigators such as Öztürk O, ŞamanO.(2012) mentioned that increasing plant population density increased seed yield per ha. Abdel-Galil and Abdel-Ghany (2014) noticed that intercropping sesame with ground nutis more profitable to farmers tan ground nut sole planting. Pretty and Bharucha (2014) reported that"the combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means". Chongdar et al. (2015) and Hamza and Abd El-Salam (2015) reported that planting Shandaweel-3 cultivar in 15th March was the effective pattern for promoting capsules number and weight/plant, sedes weight/plant and biological seeds and oil yields/fed. As wall as the interaction between sowing dates and varieties was also highly significant. Salem, Emad M.M. (2016) noticed that early sowing date (15th March) with Shandaweel-3 cultivar and adding 100 kg S/fed could be recommended for increasing sesame yield and its components. Because sesame is a short duration crop, it has the potential to enhance cropping systems intensification and diversification (Oyeogbe et al. 2015). Khan et al (2017) reported that máximum productivity and economic return was obtained when intercropping groundnut with sesame. Land equivalent ratio, equivalent yields, relative yields values and economic return were found highest under cultivated three rows of ground nut in between twop air rows of sesame. Amira A. El- Mehy and Mohamed (2018) reported that inter cropping maize hybrid TWC 324 with tomato and spraying with YE2, protected tomato plants during late summer from negative effect of high temperature and increased setting percentage and marketabl eyield as well as productivity of unitarea and net return. The objective of this research was to determine the most profitable sesame intercropping pattern with tomato and the best sowing date for sesame to attain máximum land usage.

MATERIALS AND METHODS

Field experiment was carried out to evaluate three intercropping system of tomato with sesame under three different sesame sowing dates. These experiments were conducted at Sids Agricultural Research Station, Bani-Suif Governorate, Egypt during 2018 and 2019 growing seasons. The experiment was laid out in split plot design with three replication, where sesame sowing dates was in the main plots and the intercropping arrangement treatments were in the sub plots. Sesame sowing dates were 20th April, 5th May and 20th May. Intercropping treatments were as follows:

-50% sesame (CS₁): sesame was sown on other sides of tomato bed (one plant/hill at 10 cm apart resulted in 35000 plant/fed).
-33% sesame (CS₂): sesame was sown on other sides of tomato bed (one plant/hill at 15 cm apart resulted in 23333 plant/fed).
-25% sesame (CS₃): sesame was sown on other sides of tomato bed (one plant/hill at 20 cm apart resulted in 175000 plant/fed).
Solid planting of tomato and sesame implemented in each replication to determine the competitive relationships, yield advantage of both crops and net income fed⁻¹.

The chemical and physical analysis of the experimental soil at a depth of 0-30cm is shown in Table (1) Table 1. Chemical and Physical analysis of the experimental soil at 0-30cm depth during 2018 and 2019 seasons.

	Gro	wing Season
Depth (0-30 cm)	First Season	Second Season
Textural class	Clay	Clay
	Chemical analysis	
рН	7.9	7.8
Available N ppm	45.0	37.0
Available P ppm	12.5	11.0
Available K ppm	202.5	203.8
EC. dSm-1(at 25°C)	0.53	0.66
OM%	1.20	1.57
	Physical analysis	
Sand%	16.30	16.35
Silt%	33.80	33.45
Clay%	49.90	50.20

Tomato cultivar hybrid Nema 1400 was transplanted at 30cm apart between plants in the middle of beds (120 cm width) on 5th May in the two successive seasons, while harvest of the fruit began on the end of July and lasted until the end of September. Sesame cultivar was Shandaweel 3.

The plot size was 42 m² including 5 beds of 1.2m width and 7m length. All cultural practices followed for tomato and sesame in the area were done as recommended. Air temperature was obtained from a nearby weather station during the two growing seasons and presented in Table (2).

Table 2. Monthly average of maximum (max) and minimum(min) air temperatures(°C) at the experimental site in 2018 and 2019 seasons.

	20	18	2019			
	Max.ºC	Mini.ºC	Max. °C	Mini.ºC		
April	28.41	12.94	30.68	14.44		
May	34.45	18.10	35.71	19.24		
Jun.	37.42	20.24	38.07	22.56		
Jul.	38.14	22.81	39.68	23.02		
August	37.69	22.80	38.11	23.23		
Sept.	35.32	20.52	37.76	20.91		

Data recorded in the study:

Tomato:

Ten tomato plants were selected randomly in each plot 65 days after transplanting to measure: plant height (cm) and number of branches/plant, fruit weight (g), number of fruits/plant, weight of fruits (kg)/plant were estimated at the third picking, and total yield ton/fed i.e., weight of all picking up to the end of the experiment.

Sesame:

At maturity, ten sesame plants were taken randomly from each plot to determine: plant height, number of branches/plant, number of capsules/plant, capsule length, weight of 1000- seed(g), seed yield/plant (g) and seed yield/fed (ardab). One ardab = 120Kg. Seed yield were determined per the experimental plot (42m²) and consequently yield fed⁻¹

(4200m²) was calculated.

Analysis of variance for the obtained results in each growing season was comducted. The measured variables were analyzed by ANOVA using MSTAT statistical package (Freed, 1991). Mean comparisons were performed using the least significant differences (L.S.D) test with a significance level of 5% (Gomez and Gomez, 1984).

B) Competitive relationships:

1. Land equivalent ratio (LER) :

LER defined as the ratio of area needed under sole cropping to one of intercropping at the same management level to produce an equivalent yield (Mead and Willey 1980). It is calculated as follows:

 $LER = (Y_{ab} / Y_{aa}) + (Y_{ba} / Y_{bb})$

Where: Y_{aa} = Pure stand yield of crop a (tomato)

 Y_{bb} = Pure stand yield of crop b (sesame)

Y_{ab} = Intercrop yield of crop a (tomato)

Y_{ba} = Intercrop yield of crop b (sesame)

2. Aggressivity (A).

Aggressivity value was calculated by the formula proposed by Mc- Gilichrist (1965).

$$A_{ab} = \frac{Y_{ab}}{V} - \frac{Y_{ba}}{V}$$

 $Y_{aa} \times Z_{ab}$ $Y_{bb} \times Z_{ba}$

Where: A_{ab} = Aggressivity value for the components "a".

 Y_{ab} is pure stand yield of crop a, Y_{bb} is pure stand yield of crop b, Y_{ab} is mixture yield of a (when combined with b) and Y_{ba} yield of b (when combined with a).

 $Z_{ab} is \ sown \ proportion \ of \ species \ a$ (in a mixture with b) and Z_{ba} is sown

D. Farmer's benefit:

Total cost and net return of intercropping systems as compared to recommended sole planting of tomato were determined as follows:

1. Total return of intercropping cultures = Price of tomato yield + price of sesame yield (Egyptian Pound). To calculate the total return, the average of tomato and sesame prices presented according to the **Bulletin of The Agricultural Statistics (2017) part (2).** It is supposed that all other practices for tomato and sesame plants for all treatments are constant.

2. Net return per fadden = Total return – (fixed cost of tomato + variable costs of sesame according to intercropping pattern).

3. The average of prices of main products are L.E. 1715 and 1912 for ton of tomato and for ardab of sesame (one ardab = 120Kg seeds), respectively in 2017season.

4. Total costs L.E./fed.8812 and 5106 for solid tomato and sesame, respectively.

5. Total costs of intercropped sesame with tomato = total costs of (tomato + sesame).

6. Costs of intercrop sesame: L.E/fed. 791&528and 396for 50,33 and 25% density plants, respectively.

RESULTS

Tomato:

Effect of sowing date of sesame on tomato performance:

Data in **Table (3)** indicated that. The greatest tomato yield per feddan was obtained when sesame was sown on 20nd April in both seasons (before planting tomato by 15 days). Tomato yield was 24.661 and 25.619 ton/fedin the first and second season respectively. Tomato yield/fed decreased by 5.62 and 13.27% when sesame was sown on 5th May and 20nd May respectively, in the first and second season the reduction estimated by 9.898 and 20.5% for the respective sowing dates.

Table 3. Effect of sowing dates of sesame on growth, yield and its components of tomato in 2018 and 2019 seasons.

Sowing Dates	Plant height (cm)	Number of branches /plant	Number of fruits/ plant	Weight of fruit (gm)	Weight of fruits/ plant (Kg)	yield/ fed. (ton)
		71	2018			1
20 nd April	61.78	3.34	44.64	92.22	4.11	24.661
5 th May	61.04	3.53	40.85	80.67	3.65	23.348
20 nd May	60.29	3.02	33.19	68.33	3.19	21.771
L.S.D _{0.05}	NS	NS	6.33	10.37	0.58	1.40
		Tomat	o Solid			23.860
			2019			
20 nd April	68.96	3.76	49.18	97.78	4.59	25.619
5 th May	65.16	3.69	44.233	87.89	3.80	23.312
20 nd May	60.56	3.44	40.46	77.44	3.11	21.259
L.S.D 0.05	NS	NS	5.17	9.21	0.41	2.19
		Tomat	o Solid			24.553

Effect of intercropping patterns:-

Data in (Table 4). Indicated that Cropping system CS_1 had the highest values of all characterse.i.plant height No. of branches/plant, No. of fruits/plant, weight of fruits/plant and yield/fed. in both seasons as compared to the others patterns. Whereas, the increasing of total yield/fed of tomato were 24.999 and 25.857 ton/fed. in the first and second season respectively.

Table 4. Effect of intercropping patterns of sesame on growth, yield and its components of tomato in 2018 and 2019 seasons.

Intercropping Patterns (Tomato 100%)		Plant height (cm)	No. of branches /plant	No. of fruits/ plant	Weight of fruit (gm)	Weight of fruits/ plant (Kg)	yield/ fed. (ton)
			2	018			
+ Sesame %	50	62.98	3.56	44.43	91.11	4.41	24.999
Sesame %	33	61.02	3.23	38.59	80.00	3.57	23.300
	25	59.11	3.11	35.66	70.11	2.99	21.481
L.S.D _{0.05}		5.50	0.32	6.28	5.52	0.53	2.20
			Solid				23.860
			2	019			
+	50	71.07	3.80	49.68	97.89	4.67	25.857
Sesame %	33	68.18	3.67	43.78	86.89	3.70	23.130
	25	56.42	3.40	40.41	77.44	3.12	21.259
L.S.D 0.05		5.73	0.34	5.42	5.24	0.47	1.54
			Solid				24.553

Effect of interaction between intercropping dates and intercropping patterns:

Results presented in Table (5) showed that intercropping pattern of (100 % tomato+ 50% sesame) recorded the highest values for all tomato characters when planting the sesame before tomato by 15 days and planting on 10 cm between hills in all characters of tomato, whereas gives 26.033, and 27.303 ton/fed. for total yield/fed. in the first and second seasons respectively. On the other side, the lowest value was showed under 100 % tomato + 25 % sesame pattern when planting sesame on 20cm between hills after tomato by 15 days in both seasons, whereas it gives 18.733 and 20.600 ton/fed. for total yield/fed.

Table 5. Effect of interaction between intercropping dates and intercropping patterns on grows, yield and its components for tomato in 2018 and 2019 seasons.

Intercropping Dates	IntercroppingPatterns (100% Tomato)		Plant height (cm)	No. of branches /plant	No. of fruits/ plant	Weight of fruit (gm)	Weight of fruits/ plant (Kg)	yield/ fed. (ton)
				2018				
	+	50	63.67	3.53	48.32	100.00	4.79	26.033
20 nd April	Sesame %	33	61.67	3.30	44.69	93.33	4.17	25.017
		25	60.00	3.20	40.91	83.33	3.37	22.933
5 th May	+	50	62.80	3.93	45.85	95.00	4.18	25.380
	Sesame %	33	61.27	3.40	38.47	78.33	3.30	23.753
		25	59.07	3.27	38.23	68.67	2.94	20.910
20 nd May	+	50	62.47	3.20	3913	78.33	3.70	23.583
	Sesame %	33	60.13	3.00	32.60	68.33	3.22	21.120
		25	58.27	2.87	27.85	58.33	2.65	18.733
L.S.D _{0.05}			9.52	0.55	10.88	9.57	0.92	3.80
			Solid to	mato				23.860

				2019					
	+	50	75.27	3.87	54.07	105.00	5.29	27.303	
20 nd April	Sesame %	33	71.33	3.80	50.47	98.33	4.62	25.877	
		25	60.27	3.60	43.00	90.00	3.84	23.677	
5 th May	+	50	70.60	3.80	49.23	101.67	4.79	26.177	
	Sesame %	33	67.67	3.73	42.00	85.00	3.52	22.393	
		25	57.20	3.53	41.47	75.00	3.09	21.367	
20 nd May	+	50	67.33	3.73	45.73	87.00	3.94	24.090	
	Sesame %	33	62.53	3.53	38.87	77.33	2.96	21.130	
		25	51.80	3.07	36.77	67.33	2.44	20.600	
L	L.S.D 0.05 9.83 0.59 9.38 9.08 0.82								
	Solid								

B- Sesame:

Effect of sowing dates:

Data in (Table 6).indicated that the increase in seed yield for plant and faddan when planting sesame before tomato by 15 days over that received the planting after tomato by 15 days was to 2.46 and 3.36% in the first and second season respectively. But compared to the planting the sesame in the same date of planting tomato was increased 1.40 and 1.72% in both seasons respectively.

Intercropping Dates	Plant height (cm)	No. of branches/ plant	No. of capsules/ plant	Length of capsule (cm)	Weight of 1000 seed (gm)	Seed yield/ plant (gm)	Seed yield/fed. (ardab)
			201	8			
20 th April	155.55	2.80	86.00	2.77	5.31	15.14	2.53
5 th May	148.44	2.22	70.26	2.69	4.71	12.93	2.22
20 th May	120.11	2.13	62.29	2.61	4.53	12.44	2.02
L.S.D _{0.05}	24.29	NS	13.43	NS	0.23	2.30	0.34
			201	9			
20 th April	171.67	3.00	114.88	3.85	5.54	15.52	3.07
5 th May	164.44	2.49	95.33	3.51	4.89	13.16	2.62
20 th May	137.67	2.35	92.52	3.33	4.75	13.03	2.27
L.S.D 0.05	25.28	NS	19.79	NS	0.22	2.14	0.48

2- Effect of intercropping patterns of sesame on the on growth, yield and its components of sesame in 2018 and 2019 seasons: Results in Table (7) observed that the average no. of branches/plant, length of capsule, weight of 1000 seed and seed yield/plant were increased with the least sesame densities (25%) and gradually decreased with increasing plant density up to 50% in the intercrop in the first and second season. Seed yield per fed. inversely behaved to yield components traits, the 50% density of sesame treatment significantly out- yielded the 33% and 25% treatments. The increase in yield of 50% density treatment over the 33% and 25% treatmentswere estimated to 6.72%, 25.69% in the first season and 17.93%, 31.76% in the second season respectively.

Table 7. Effect of intercropping patterns of sesame or	n growth, yield and its compor	nents of sesame in 2018 and 2019 seasons.

Intercropp Patterns (Tomato 10	5	Plant height (cm)	No. of branches/ plant	No. of capsules/ plant	Length of capsule (cm)	Weight of 1000 seed (gm)	Seed yield/ plant (gm)	Seed yield/fed. (ardab)
				2018				
+	50	149.44	2.04	56.44	2.33	4.21	11.73	2.53
Sesame %	33	142.67	2.44	73.81	2.71	4.82	13.46	2.36
	25	132.00	2.67	88.29	3.03	5.53	15.31	1.88
L.S.D _{0.05}		9.85	0.25	7.62	0.36	0.25	1.19	0.33
			Sesame Sol	id				5.37
				2019				
+	50	165.00	2.29	89.18	3.21	4.64	12.45	3.18
Sesame %	33	159.44	2.64	98.66	3.51	4.90	13.62	2.61
	25	149.45	2.91	114.82	3.96	5.65	15.65	2.17
L.S.D 0.05	i	10.08	0.23	13.72	0.30	0.27	1.33	0.26
			Sesame Sol	id				6.85

Although, the total yield is considered a reliable index of yield component traits, but sesame population density within each treatment have to be taken into consideration. These results agreed with those observed by **Ibrahim et al.(2010)**.

3- Effect of interaction between intercropping dates and intercropping patterns. The interaction revealed that the highest values for seed yield per fed. was obtained in Table (8) when planting the seed sesame before planting of tomato by 15 days with 50% plant density of sesame, (2.83 and 3.60 ardab/fed. in both season respectively), whereas, the lowest yield was showed when planting seed of sesame after tomato by 15 days with 25% plant density of sesame, (1.52 and 1.82 ardab/fed. in both season respectively), .

Intercropping Dates		Intercropping Patterns		No. of branches/plant	No. of capsules/	Length of capsule	Weight of 1000seed	Seed yield/	Seed yield/fed
	(Tomato 100 %)		(cm)		plant	(cm)	(gm)	plant (gm)	(ardab)
				20)18				
20 th April	+	50	167.33	2.27	74.11	2.43	4.29	12.83	2.83
	Sesame %	33	155.33	2.93	85.44	2.75	5.45	14.88	2.63
		25	144.00	3.20	98.44	3.14	6.19	17.70	2.13
5 th May + Sesame	+	50	154.33	1.93	50.22	2.37	4.21	11.52	2.42
	Sesame %	33	152.00	2.27	74.11	2.70	4.56	12.69	2.25
		25	139.00	2.47	86.44	3.03	5.37	14.59	2.00
20 th May	+	50	126.67	1.93	45.00	2.20	4.12	10.85	2.33
	Sesame %	33	120.67	2.13	61.89	2.69	4.44	12.81	2.20
		25	113.00	2.33	79.99	2.93	5.04	13.65	1.52
L.	S.D _{0.05}		17.05	NS	13.20	0.63	0.44	2.05	0.57
			S	esame Solid				13.10	5.37
				20)19				
20 th April	+	50	181.67	2.47	107.99	3.49	4.79	13.52	3.60
	Sesame %	33	171.67	3.13	108.22	3.78	5.53	15.18	2.99
		25	161.67	3.40	128.22	4.27	6.29	17.87	2.61
5 th May	+	50	170.00	2.27	94.77	3.10	4.59	11.57	3.34
-	Sesame %	33	168.33	2.47	107.45	3.48	4.61	12.82	2.40
		25	155.00	2.73	108.78	3.95	5.48	15.08	2.08
20 th May	+	50	143.33	2.13	77.11	3.04	4.54	12.27	2.60
-	Sesame %	33	138.33	2.33	82.44	3.27	4.55	12.85	2.45
		25	131.67	2.60	93.00	3.67	5.17	14.00	1.82
L.S	S.D 0.05		17.46	NS	23.76	0.52	0.64	2.30	0.45
			S	esame Solid		· I		13.83	6.85

 Table 8. Effect of interaction between intercropping dates and intercropping patterns of sesame on growth, yield and its components of sesame in 2018 and 2019 seasons.

Competitive relationships

1. Land equivalent ratio: (LER)

The data in **Table (9)** indicate that all the values of LER which obtained, in 2018 and 2019 seasons exceeded the unit. It ranged from 1.07 due to intercropping 25% of sesame with tomato to 1.62 due to intercropping 50% of sesame with tomato. The advantage of the highest LER by intercropping sesame with tomato over the others intercropping patterns.

The data in Table (10). show that. This main that tomato was the dominant intercrop whereas as sesame was the dominated when sesame planting before tomato by 15 days in both seasons. On the other hand the sesame were positive while values of tomato were negative whereas sesame was the dominant when sesame planting with or after the tomato by 15 days.

 Table 9. Effect of intercropping patterns of sesame with tomato on competitive relationships, in 2018 and 2019 seasons.

Treat	ments		Relative yi	eld (RY)	LER	Aggressivity(A)	
			Ryt	Rys		tomato	sesame
				2018			
20 th April	+	50	1.09	0.53	1.62	+0.03	-0.03
	Sesame %	33	1.05	0.49	1.54	+0.07	-0.07
		25	0.96	0.40	1.36	+0.16	-0.16
5 th May	+	50	1.06	0.45	1.51	-0.30	+0.30
	Sesame %	33	0.99	0.42	1.41	-0.28	+0.28
		25	0.88	0.37	1.25	-0.24	+0.24
20 th May	+	50	0.99	0.43	1.42	-0.73	+0.73
	Sesame %	33	0.89	0.41	1.30	-0.75	+0.75
		25	0.79	0.28	1.07	-0.33	+0.33
				2019			
20 th April	+	50	1.11	0.52	1.63	+0.05	-0.05
	Sesame %	33	1.05	0.44	1.49	+0.17	-0.17
		25	0.96	0.38	1.34	+0.20	-0.20
5 th May	+	50	1.07	0.49	1.56	-0.43	+0.43
	Sesame %	33	0.91	0.35	1.26	-0.15	+0.15
		25	0.87	0.30	1.17	-0.03	+0.03
20 th May	+	50	0.98	0.38	1.36	-0.54	+0.54
	Sesame %	33	0.86	0.36	1.22	-0.58	+0.58
		25	0.84	0.27	1.11	-0.24	+0.24

D. Farmer's benefit:

The financial return of intercropped sesame with tomato as compared with solid planting of both crops tomato or sesame, (Table 10). In general, intercropping sesame increased total and net return by 8.32% and 6.85% in the first season as well as 6.78% and 5.50% in the

second season respectively, as compared with recommended solid tomato. The net return of intercropping sesame with tomato when planting in 20th April and varied between treatments from 50%, 33% to 25% plant density from L.E. 42118, 37732 to 34003respectively, in the first season and from L.E. 44870, 39685 to 36896 respectively, in the second season.

Intercropping Dates	Intercropping Patterns (Tomato 100 %)		Yield/fed.		Financial return (L.E./fed.)				
			Tomato Ton	Sesame Ardab	Tomato yield	Sesame Yield	Total income	Total Cost	Net incom
				2018	yield	Tield	income	0051	meorin
20 th April	+ Sesame %	50	26.033	3.70	44647	7074	51721	9604	42117
		33	25.017	2.18	42904	4168	47072	9340	37732
		25	22.933	2.03	39330	3881	43211	9208	34003
Mean			24.661	2.64	42294	5041	47335	9384	37952
5 th May	+ Sesame %	50	25.380	2.50	43527	4780	48307	9603	38704
		33	23.553	2.17	40393	4149	44542	9340	35202
		25	20.910	1.85	35861	3537	39398	9208	30190
Mean			23.281	2.17	39927	4155	44082	9384	34698
20 th May	+ Sesame %	50	23.583	2.23	40445	4264	44709	9603	35106
		33	21.130	1.92	36238	3671	39909	9340	30569
		25	20.600	1.71	35329	3270	38599	9208	29393
Mean			21.77	1.95	37337	3735	41072	9384	31688
Mean of	+	50	24.999	2.81	42873	5373	48246	9603	38643
intercropping	Sesame %	33	23.233	2.09	39845	3996	43841	9340	3450
systems		25	21.481	1.86	368403	3563	40403	9208	31195
		Mean	23.238	2.25	39853	4311	44163	9384	34779
Tomato sole planting			23.860		40920		40920	8812	3210
Sesame sole planting				5.37		10267		5106	516
				2019					
20 th April	+	50	27.303	4.00	46825	7648	54473	9603	44870
	Sesame %	33	25.877	2.43	44379	4646	49025	9340	39685
		25	23.677	2.30	40606	4398	45004	9208	35796
Mean			25.619	2.91	43936	5565	49501	9384	40117
5 th May	+	50	26.177	2.78	44894	5315	50209	9603	40606
	Sesame %	33	22.393	2.37	38404	4531	42935	9340	33595
		25	21.367	2.12	36644	4053	40697	9208	31489
Mean			23.312	2.42	39980	4634	44614	9384	35230
20 th May	+	50	24.090	2.52	41314	4818	46132	9603	36529
	Sesame %	33	21.120	2.12	36221	4053	40274	9340	30934
		25	18.733	1.98	32127	3786	35913	9208	2670
Mean			21.314	2.21	36554	4219	40773	9384	31389
Mean of	+	50	25.857	3.10	44344	5927	50271	9603	40668
intercropping	Sesame %	33	23.130	2.31	39668	4410	44078	9340	34738
systems		25	21.259	2.13	36459	4079	40538	9208	31330
		Mean	23.415	2.53	40157	4805	44962	9384	35578
Tomato sole planting			24.553		42108		42108	8812	3329
		Sesame sole planting				13097		5106	7993

DISCUSSION

The sowing date of sesame had significant effect on yield components of tomato intercropped with sesame. These results may be due to the fact that the tomato plants were not affected by the high temperatures during the flowering and decade stages. These results were supported by those obtained by Ibrahim et al., (2010 and 2011).

Cropping systems significantly affected, plant height, No. of branches/plant, No. of fruits/plant, weight of fruit, weight of fruits/plant and total yield/fed. This results may be due to increasing of plant distance for intercropped sesame, which led to the shade of the plants and protect them from high temperature and not to drop the flowers and increase the nodes and consequently fruit yield was increased to a great extent. These results are consistent with Hussain *et al.*, 2008, Mohamed *et al.*, 2013, Degri et al., 2012; Degri et al., 2014 and Abd El-Zaher et al., (2013).

Plant height, No. of branches/plant, No. of fruits/plant, weight of fruit, weight of fruits/plant, and yield/fed. were significantly affected by the interaction between intercropping dates and intercropping patterns in both season. The data of both seasons indicated to night temperature during August and Sept. since soil temperature, the first season, were associated with lower degree, rather than the season, As a consequence the intercropping tomato yielded better under all respective sesame densities with all sowing dates. These results are in agreement with AbdEl-Hady *et al.* (2013) and Abd El-Gaid *et al.*, 2014). Plant height, no. of capsules/plant, weight of 1000seed, seed yield/plant and seed yield/fed. were significantly increased with sowing dates except no. of branches/plant it was not significantly and length of capsule in the first and second seasons.

Accordingly, the enhancements in sesame yields, yield components with early planting date may be due to that the plants had optimum vegetative growth, adequate photosynthetic activity and more assimilates than planting latter. This results cleared with those of Chongdar et al. (2015), Hamza and Abd El-Salam (2015) and Salem, Emad M.M.(2016)

The intercropping treatments had significant effects on plant height, no.of branches/plant, No. of capsules/plant, length of capsule, weight of 1000 seed, seed yield/plant and seed yield/fed. of sesame intercropped with tomato in both seasons. The above and

below ground competition between plants for solar radiation intercepted, water and nutrients from the soil might account much for the superiority of these traits when sesame density decreased to only 25%. The results are in agreement with those obtained by El Naim, et al (2010), Öztürk O, Şaman O.(2012) and Islam et al. (2016). Although, the total yield is considered a reliable index of yield component traits, but sesame population density within each treatment have to be taken into consideration. These results agreed with those observed by **Ibrahim et al. (2010)**.

Interaction effect between intercropping dates and patterns of sesame had significant effects on all characters for sesame in both seasons except no. of branches/plant in the two seasons. These results agreed with the results obtained by Abd El-Aal and Zohry (2004), Ibrahim et al., (2010 and 2011), Tahir et al. (2012), Abd El-Hady *et al.* (2013), Abd El-Zaher et al., (2013), and Hamza and Abd El-Salam (2015), Hussein and Azouz(2016) and Islam et al. (2016). In general, intercropping sesame with tomato increased LER as compared to sole sesame. . It is clear that plant population density of sesame and tomato played a major role in increasing productivity per unit area under intercropping planting where it reached 25 and 100 % of sole planting, respectively. Similar results were obtained by Khan, et al (2017) and Amira A. El-Mehy and Mohamed (2018). The aggressivity of sesame were negative while values of tomato were positive in CS₁ with all intercropping dates in both seasons. These results due to increasing the yield of tomato compared with the others dates for intercropping the sesame. This main that tomato was the dominated intercrop. These results were similar to those obtained by Ibrahim et al., (2010 and 2011), Upadhyay *et al.*, (2010) and (WPTC,2011). The financial return of intercropped sesame with tomato as compared with solid planting of both crops tomato or sesame, According to the objective, intercropping sesame with tomato should be compared with solid planting of tomato (2016).

CONCLUSION

Finally, intercropping sesame with tomato gave the highest values of yield and its components and economic return (total income or net return) compared to sole planting for each tomato, or sesame. Therefore, it is recommended to grow sesame before tomatoes by 15 days, at a distance of 10 cm between plants and one plant in the hill(with a density of 50% of the total density of sesame) to obtain the highest productivity of tomato crops and the highest economic return to farmers.

REFERENCES

- Abd El-Aal, A. I. N., & Zohry, A. A. (2003). Natural phosphate affecting maize as a protective crop for tomato under environmental stress conditions at Toshky. *Egypt J. Agric. Res*, *81*(3), 937-953.
- El-Gaid, M. A. A., Al-Dokeshy, M. H., & Nassef, D. M. (2014). Effects of intercropping system of tomato and common bean on growth, yield components and land equivalent ratio in New Valley Governorate. *Asian Journal of Crop Science*, 6(3), 254-261.
- Abdel-Galil, A. M., & Abdel-Ghany, R. E. A. (2014). Effect of groundnut–sesame intercropping and nitrogen fertilizer on yield, yield components and infection of root-rot and wilt diseases. *International Journal Plant Soil Sciences*, 3(6), 623-43.
- El-Hady, A., Marey, R. A., & Abou-Keriasha, M. A. (2013). Protection of tomato plants against cold and frost conditions by intercropping under Sohag governorate. *Journal of Plant Production*, 4(7), 1077-1096.
- Mohamed, W., Ahmed, N. R., & Abd El-Hakim, W. M. (2013). Effect of intercropping dates of sowing and N fertilizers on growth and yield of maize and tomato. *Egypt J Appl Sci*, 28(12B), 625-644.
- ALI, S., & JAN, A. (2014). Sowing dates and nitrogen level effect on yield and yield attributes of sesame cultivars. Sarhad Journal of Agriculture, 30(2).
- El-Mehy, A. A., & Mohamed, M. H. M. (2018). Yield and economic evaluation of maize and tomato as affected by cropping systems and some growth stimulants. *Sciences*, 8(01), 209-222
- Bhardwaj, H. L., Hamama, A. A., Kraemer, M. E., & Langham, D. R. (2014). Cultivars, planting dates, and row spacing effects on sesame seed yield and mineral composition. *Journal of Agricultural Science*, 6(9), 1.
- Bulletin of The Agricultural Statistics (2017). Ministry of Agriculture, Giza, Egypt
- Meguid, M. A. (2017). Key features of the Egypt's water and agricultural resources. In *Conventional Water Resources and Agriculture in Egypt* (pp. 39-99). Springer, Cham.
- Chongdar, S., Singharoy, A., Saha, A., & Chhetri, B. (2015). Performance of summer sesame (Sesamum indicum L.) cultivars under varying dates of sowing in prevailing agro-climatic condition of North Bengal. *Scientific Research and Essays*, 10(12), 411-420.
- Degri, M. M., Mailafiya, D. M., & Mshelia, J. S. (2014). Effect of intercropping pattern on stem borer infestation in pearl millet (Pennisetum glaucum L.) grown in the Nigerian Sudan Savannah. *Advances in Entomology*, 2014.
- Degri, M. M., & Samaila, A. E. (2014). Impact of intercropping tomato and maize on the infestation of tomato fruit borer [Helicoverpa armigera (Hubner)]. Journal of agricultural and crop research, 2(8), 160-164.
- Degri, M. M., Sharah, H. A., & Dauda, Z. (2012). Effects of Intercropping Pattern and Planting Date on the Performance of Two Cowpea Varieties in Dalwa, Maiduguri, Nigeria. Journal of Environmental Issues and Agriculture in Developing Countries, 4(3), 36.
- Elobied, S. (2010). Effect of plant density on the performance of some sesame (Sesamum indicum L) cultivars under Rain fed. *Research Journal of Agriculture and Biological Sciences, 6*(4), 498-504.
- Freed, R. D., & Eisensmith, S. P. (1991). MSTAT microcomputer statistical program. *Michigan State University, East Lansing, Michigan, USA*. Gomez, K. A., & Gomez, A. A. (1984). *Statistical procedures for agricultural research*. John Wiley & Sons.
- Hamza, M., & Abd El-Salam, R. M. (2015). Optimum planting date for three sesame cultivars growing under sandy soil conditions in Egypt. American-Eurasian Journal of Agriculture and Environmental Science, 15(5), 868-877.
- Haruna, I. M., Aliyu, L., & Maunde, S. M. (2013). Competative behaviour of groundnut in sesame-groundnut intercropping system under varying poultry manure rates and planting arrangement. *Sustainable Agriculture Research*, 2(526-2016-37775).
- Azouz, H. A. (2016). The effect of Intercropping Tomato with Garlic Plants on the Corresponding infestation with some Pests at Beni-Suif Governorate. *Egyptian Academic Journal of Biological Sciences. A, Entomology, 9*(3), 1-6.
- Hussain, S. A., Ali, N., Rab, A., & Shah, M. (2008). Yield and economic dynamics of intercopping in summer vegetables. Sarhad Journal of Agriculture, 24(1), 31.
- El-Hady, A., Marey, R. A., & Abou-Keriasha, M. A. (2013). Protection of tomato plants against cold and frost conditions by intercropping under Sohag governorate. *Journal of Plant Production*, 4(7), 1077-1096.
- Ibrahim, S., Shaaban, M., & Gendy, E. K. (2010). Intercropping faba bean with tomato. Egypt J Appl Sci, 25(6A), 167-181.
- Islam, M. R., Molla, M. S. H., & Main, M. A. K. (2016). Productivity and profitability of intercropping sesame with turmeric at marginal farmers level of Bangladesh. *SAARC Journal of Agriculture*, 14(1), 47-58.
- Khan, M. A. H., Sultana, N., Akhtar, S., Akter, N., & Zaman, M. S. (2017). Performance of intercropping groundnut with sesame. Bangladesh Agronomy Journal, 20(1), 99-105.

- Sherif, S. A., & Salem, A. K. (2011). Studies on Cassava (Manihot esculenta Crantz) Intercropped with Fodder Cowpea (Vigna sinensis L.) in Sandy Soil. *Egyptian Journal of Agronomy*, 33(1), 95-111.
- Mead, R., & Willey, R. W. (1980). The concept of a 'land equivalent ratio' and advantages in yields from intercropping. *Experimental Agriculture*, *16*(3), 217-228.
- Mohamed, W., Ahmed, N. R., & Abd El-Hakim, W. M. (2013). Effect of intercropping dates of sowing and N fertilizers on growth and yield of maize and tomato. *Egypt J Appl Sci*, 28(12B), 625-644.
- Oyeogbe, A., Ogunshakin, R., Vaghela, S., & Patel, B. (2015). Towards sustainable intensification of sesame-based cropping systems diversification in northwestern India. *Journal of Food Security*, 3(1), 1-5.
- Öztürk, Ö., & Şaman, O. (2012). Effects of different plant densities on the yield and quality of second crop sesame. International Journal of Agricultural and Biosystems Engineering, 6(9), 644-649.
- Pressman, E., Peet, M. M., & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. *Annals of botany*, *90*(5), 631-636.
- Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of botany, 114(8), 1571-1596.
- Saeed, A. S. I. F., Hayat, K. H. I. Z. A. R., Khan, A. A., & Iqbal, S. A. J. I. D. (2007). Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). *International Journal of Agriculture and Biology*, *9*(4), 649-652.
- Salem, E. M. (2016). Effect of sowing dates and sulphur levels on some sesame (Sesamum indicum L.) cultivars under New Valley conditions. Egyptian Journal of Desert Research, 66(1), 17-34.
- Tahir, M., Saeed, U., Ali, A., Hassan, I., Naeem, M., Ibrahim, M., ... & Javeed, H. M. R. (2012). Optimizing sowing date and row spacing for newly evolved sesame (Sesamum indicum L.) variety TH-6. *Pakistan Journal of Life & Social Sciences*, 10(1), 1-4.
- Upadhyay, K. P., Sharma, M. D., Shakya, S. M., Ortiz-Ferrara, G., Tiwari, T. P., & Sharma, R. C. (2010). Performance and profitability study of baby corn and tomato intercropping.
- Pane, C., Palese, A. M., Spaccini, R., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. *Scientia Horticulturae*, 202, 117-124.

Copyright: © 2021 by the authors. Licensee EJAR, EKB, Egypt. EJAR offers immediate open access to its material on the grounds that making research accessible freely to the public facilitates a more global knowledge exchange. Users can read, download, copy, distribute, print or share a link to the complete text of the application under <u>Creative Commons BY-NC-SA International License</u>.

تأثير بعض نظم تحميل السمسم مع الطماطم تحت مواعيد زراعه مختلفة للسمسم على إنتاجية كلا المحصولين

محمد مراد لملوم و 2 عبد الجواد محمد احمد 1

1 قسم بحوث التكثيف المحصولى – معهد بحوث المحاصيل الحقليه – مركز البحوث الزراعيه- مصر 2 قسم بحوث الخضر – معهد بحوث البسانين – مركز البحوث الزراعيه – مصر * :بريد المؤلف المراسل: ndr.mourad180@yahoo.com

الملخص العربى

أقيمت تجربتان حقليتان فى محطة بحوث البساتين بسدس محافظة بنى سويف خلال عامى 2018 و 2019 بهدف دراسة تأثير تحميل السمسم (شندويل-3) على هجين الطماطم (نيما 1400) فى ثلاث نظم تحميل (100% طماطم + 50% سمسم ، 2001% طماطم + 33% سمسم ، 2001% طماطم + 25% سمسم) بلإضافه للزراعه المنفرده لكلا المحصولين تحت ثلاث مواعيد تحميل من السمسم وتأثيره على طول النبات والمحصول ومكوناته. تم إستخدام تصميم قطع منشقه مره واحده فى ثلاث مكررات حيث وضعت مواعيد التحميل للسمسم فى القطع الرئيسيه ونظم التحميل فى القطع الفرعيه واوضحت النتائج ان نظم التحميل ادت الى زيادة محيع صفات النمو والمحصول للطماطم مقارنة بالزراعه المنفرده كما تأثر المحصول ومكوناته لكلا المحصولين معنويا بنظم التحميل المختلفه وكانت اعلى القيم للمحصول (26,033 ، 27,303 طن/فدان) فى الموسم الأول والثانى على التوالى عند زراعة السمسم قبل الطماطم بـ 15 يوم و 50% من الكثافه الكليه للسمسم و كانت اعلى قيم محصول السمسم (3,2 ، 3,60 الدب/فدان) فى كلا الموسمين على التوالى عند زراعة السمسم قبل الطماطم بـ 15 يوم وبكثافة 25% من الكثافه الكليه بينما اقل القيم (2.5، 2.5، 2.5 البرب/فدان)سجلت عند زراعة السمسم بعد الطماطم بـ 15 يوم وبكثافة 52% من الكثافه الكليه بينما اقل القيم وكذان) فى كلا الموسمين على التوالى عند زراعة السمسم قبل الطماطم بـ 15 يوم وبكثافة 25% من الكثافه الكليه بينما اقل القيم و كذاك اردب/فدان)سجلت عند زراعة السمسم بعد الطماطم بـ 15 يوم وبكثافة 52% من الكثافه الكليه بينما قل القيم وكذلك ورد الموسمين على التوالى ولازية السمسم قبل الطماطم بـ 15 يوم وبكثافة 75% من الكثافه الكليه بينما قل القيم وكذان الموسمين الموسمين على التوالى عند زراعة السمسم قبل الطماطم بـ 15 يوم ولى كلا الموسمين على التوالى وكذلك المحصولي وكذلك المحسول الموسمين ولى الموالى وكذلك اردب/فدان) محد الموالى بالغرار الموسمين على التوالى وكذلك الموسمين على التوالى وكذلك اردب/فدان) فى كلا الموسمين على التوالى وكذلك اردب/فدان إستغلال الأرض (1.50 ، 1.65) وعرد وراعة السمسم قبل الطماطم بـ 15 يوم ولى كلا الموسمين على التوالى وكذلك المحسول المنفرده (1.50 ، 1.50) ولي العائد الكلى وصافى العائد العلمى القيم المنفرده (1.50 ، 1.50) وحافى العائد اعلى القير ولنحدت النتائج ان الطماطم المنفرده (1.50 ، 1.50) ولائل المم

وعلى ذلك يمكن التوصيه بتحميل السمسم مع الطماطم بزراعته قبل الطماطم بـ 15 يوم وبكثافه 50% من الكثافه الكليه للحصول على إنتاجيه وإعلى صافي ربح من الطماطم .

ا**لكلمات المفتاحية**:طماطم،الكثافه النباتيه للسمسم،تحميل،معدل كفاءة إستغلال الأرض،العدوانيه،العائد الكلي،صافي العائد