TOXIC ACTIVITY OF SIX PLANT WATER EXTRACTS AGAINST
SPODOPTERA LITTORALIS (LEP., NOCTUIDAE) IN THE
LABORATORY

YACOUB, SH.S. AND AMANY S. EL-HEFNY

Plant Protection Research Institute, ARC, Dokki, Giza

(Manuscript received 1st August 2007)

Abstract

The effect of water extracts of six plants as a toxic activity on Spodoptera littoralis 2nd & 4th larvae was investigated under controlled laboratory condition of 27°C and 55 - 65% R.H. These plants were leaves of Dodonaea, Dodonaea viscosa, (family: Sapindaceae), pulp and seeds of sour orange Citrus aurantium v. amara (family: Rutaceae), (midrib of cabbage leaf), Brassica oleracea v. capitata, (family: Cruciferae), (turnip), Brassica napus v. esculenta (family: Cruciferae) and (Mango-singara) Mangifera domestica (family: Anacardiaceae).

Data obtained revealed that Dodonaea water extract and pulp of sour orange water extract caused the highest mortality and reduction percentages (80 & 75% than control in 2nd instar larvae and 80 & 81.3% than control in 4th instar larvae, respectively). In addition, pulp of sour orange extract manifested effects since it caused shorter mean of larval duration (13.5 days), longer mean of pupal duration (15 days) and lowest mean of pupal weight (0.1485 gm). Meanwhile, shorter mean of adult longevity (4.3 days) was due to Dodonaea leaves extract. Bioassay data were observable in which the shortest LT50 values (4.46 and 3.59 days) for 2nd and 4th instars larva treated with Dodonaea extract at 10% concentration, respectively.

INTRODUCTION

The Egyptian cotton leaf worm, Spodoptera littoralis (Boisdruval) (Lepidoptera, Noctuidae), is a major pest of cotton and other cultivated crops in Egypt as well as Mediterranean and Middle East countries (Nasr et al., 1984, Ahmad, 1988, Campion et al., 1997). This pest became resistant to different pesticides due to the repeated use of conventional chemical insecticides.

The use of natural products from plant origin is a new trend which may proof efficiency for pests' control. These natural products are mainly plant extracts which prove to have deleterious effects on target pests. These efficacies are manifested in several ways, including direct toxicity (Hiremath et al., 1997) and suppression of calling behavior (Khan and Sivexa, 1986).

The work outlined in this paper aimed to assay the efficacy of leaves, seeds, midrib, pulp and roots of different plants as a toxic activity against the 2nd and 4th instars of the cotton leaf worm S. littoralis.
MATERIALS AND METHODS

Six plants were chosen in the present experiments to test their toxic activity against *S. littoralis* larvae in laboratory. These plants were Leaves of Dodonaea viscosa, (Sapindaceae), pulps and seeds of sour orange, *Citrus aurantium* v. amara (Rutaceae), midrib of cabbage leaf, *Brassica olaracea* v. capitata, (Cruciferae), (turnip), *Brassica rapa* v. *esculenta* roots (Cruciferae) and Mango-singara, Leaves of *Mangifera domestica* (Anacardiaceae).

I. Preparation of the materials

Dodonaea and Mango-singara leaves were cleaned and washed by water, then air dried in the laboratory. Extraction methods described by Emara *et al.* (1994), Omar *et al.* (1994) and Yacoub (2006) were prepared by adding 500 ml of boiling water to 50 gm ground parts of some plants and stirred for 15 min after stopping the container tightly. While, fifty-five gm of turnip root and three midrib of cabbage leaf were soaked in 500 ml of boiling water for three hours with interval stirring. While pulp of sour orange fruits were squeezed without seeds. Twenty gm seeds were separated and boiled in 500 ml water.

II. Laboratory experiments

Laboratory experiments were conducted to study the toxic activity of the aforementioned extracts against the 2nd and 4th instars of *S. littoralis* larvae (laboratory strain) the colony was kept under laboratory conditions 27 °C and 55 – 65% R.H, the experiments were carried out using dipping method. Fresh castor oil leaves were dipped for 10 seconds in the extracted solutions (Sadak, 2003). The treated leaves were left in shade to be air dried. Eighty larvae were kept in plastic cups and divided in 4 replicates of 20 larvae each. Larval mortality were daily inspected until pupation. Mortality percentages were calculated using the following formula:

\[
\text{% Mortality} = \frac{\text{No. of dead larvae}}{\text{Total No. of larvae}} \times 100
\]

The duration of larvae, pupae and adult longevity were calculated. Also the pupal weights were estimated.

III. Bioassay studies

Laboratory experiments were confirmed for the toxic effect on the aforementioned extracts on 2nd and 4th instars of *S. littoralis* larvae. The total number of treated larvae was divided into four replicates of 20 larvae each.

\[LT_{50}\] values at 0.05 confidence limits and slope regression lines were represented in figures, using Probit analysis statistically methods of Litchfield and Wilcoxon (1949).
RESULTS AND DISCUSSION

I. Effect of extracts on mortality percentages

a. on 2nd instar larvae:

Data presented in Table (1), show mortality percentages of 2nd instar larvae of *S. littoralis*. The higher mortality percentage was due to water-Dodonaea extract which caused 80% mortality representing 75% reduction than control, followed by water-midrib of cabbage which caused 70%, achieving reduction 71.4% than control. While, water-pulp & seed of sour orange and turnip extracts caused the same percentage of mortality 60% as represented 66.7% reduction than control. On the contrary, water-mango singara extract was the least effective treatment against 2nd instar larvae of *S. littoralis* causing 50% mortality and 60% reduction than control (20% mortality).

b. on 4th instar larvae:

In the same Table (1) data obtained clearly showed that the highest mortality percentages of 4th instar larvae of *S. littoralis* were 80 and 75% by water-pulp of sour orange and dodonaea extracts, respectively, representing 81.3 and 80% reduction than control. The remaining treatments could be classified in two groups, the first had an intermediate effect as seeds of sour orange water extract only with 70% mortality achieving 78.6% reduction than control, the second had the least efficacy including water-midrib of cabbage leaf, turnip and mango singara extracts, 50% mortality for each, causing 70% reductions than control (15% mortality), Table (1).

II. Effect of extracts on instar durations and pupal weight:

a. on larval duration

As shown in Table (1), all treatments shortened the mean of larval duration when compared with that in the control. The shortest mean of larval duration period resulted from water-pulp of sour orange extract (13.5 days) indicating the severe effect of this extract, followed, by water-Dodonaea, midrib of cabbage leaf and turnip extracts caused 14, 15 and 15 days as mean of larval duration, respectively. The remaining treatments water-seeds of sour orange and mango-singara extracts led to 15.5 and 17 days of larval duration, respectively.

b. on pupal duration

All treatments caused prolongation effect and an increasing in pupal duration especially, that of water-pulp of sour orange extract (15 days as the average) compared with the control (9.5 days). On the contrary, water-mango singara extract led to 11 days, while, the remaining treatments could be fairly arranged in descending order according to the longevity of duration as, water-seeds of sour orange and turnip
extracts (14 days average for each), water midrib of cabbage leaf extract (13.5 days) and finally water-Dodonaea extract (13 days), Table (1).

c: on pupal weight

All treatments caused reduction in the pupal weight averaged 0.148 to 0.203 gm only /pupa opposed to 0.285 gm in the control. The highest efficacy on pupal weight was that achieved by water-pulp of sour orange extract 0.148 gm /pupa, followed by midrib of cabbage leaf extract, seeds of sour orange extract, turnip root extract, water-Dodonaea extract and finally the lowest effect on pupal weight was due to mango singara extract. Their values were 0.180, 0.188, 0.194, 0.197 and 0.203 mg /pupa, respectively, Table (1).

d: on adult longevity:

Results achieved concerning adult longevity after treatment with different extracts indicated that the highest efficacy caused by water-Dodonaea extract (4.3 days as average) when compared with that in the control (8.3 days). While, the remaining treatments averaged from 5.3 days after treated by pulp sour orange extract to 6.3 days after treatment with water mango-singara extract as shown Table (1).

The pervious results are considered very important to clear the role of extracts in reducing the numbers of insects without any environmental pollution, and there are also, considered in harmony with the tradition of farmers when cultivated Dodonaea plant surrounding by gardensand fields.

III. Laboratory bioassay:

Responses of 2nd and 4th instars of *S. littoralis* larvae to different plant extracts are show in Table (2) and illustrated in Figs (182).

III.a. Effect of 2nd instars treatments:

Data in Table (2) show LT90 values after feeding *S. littoralis* 2nd instar larvae of *S. littoralis* on castor oil leaves treated with different plant extracts. The shortest value was obtained from treatment by pulp of sour orange water extract (4.46 days), while, intermediate LT90 values occurred by Dodonaea, seeds of sour orange and mid-rib of cabbage leaf extracts (5.14, 5.51 and 6.32 days, respectively). Finally, the longer values occurred by turnip and mango-singara extracts (7.40 and 7.58 days, respectively).

III.b. Effect of 4th instar treatments

Data in Table (2) indicated that shorter LT90 values occurred from pulp of sour orange and Dodonaea extracts, being (3.59 and 4.35 days, respectively), while the longer LT90 values (6.37 and 6.38 days) were recorded from mango-singara leaves and seeds of sour orange extracts, respectively.
LT₉₀’s resulted from the remaining treatments ranked intermediate site as (5.64 and 5.99 days) recorded from midrib of cabbage leaf and turnip extracts, respectively.

The previous results are considered important for controlling *S. littoralis* by Dodonaea and pulp of sour orange water extracts, for this reason the farmers cultivate Dodonaea around their gardens and the important role for pulp of sour orange extract obviously in this results which caused 80 & 75 and 60 & 80% mortality in 2nd and 4th instars of *S. littoralis* larvae, respectively.

The results obtained in this study is in agreement with that of Abdel-Atiz *et al.*, (1995) in which they found that the aqueous extract of Dodonae gave the highest larval mortality and reduction in pupation and fecundity when it was tested on the Egyptian cotton leafworm, *Spodoptera littoralis*. This is, also, supported by the finding of El-Din, M.M. and El-Gengaihi, S.E. (2000) evaluated extract of Dodonaea plants in the laboratory against *S. littoralis* and stated that the mortality at the end of the larval stage was 90% at concentration 5% and gave 100% pupal mortality. Also, Mogahed and Gesraha (2005) found that *D. viscosa* leaf extract reduced the infestation of cotton seedlings by *Aphis gossypii* and *Bemisia tabaci* (*B. tabaci*) and exhibited repellent effects on *B. tabaci*.
Table 1. Percentages mortality for the 2nd & 4th instar of Spodoptera littoralis larvae and averages of larval duration, pupal duration, pupal weight and adult longevity after treatment with different plant water extracts in the laboratory.

<table>
<thead>
<tr>
<th>Treatments (water-extract)</th>
<th>2nd Instar</th>
<th>4th Instar</th>
<th>Mean of larval duration (days)</th>
<th>Mean of pupal duration (days)</th>
<th>Mean of pupal weight (gm)</th>
<th>Mean of adult longevity (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Mortality</td>
<td>% Reduction</td>
<td>% Mortality</td>
<td>% Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Leaf of dodonia</td>
<td>80</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>2. Pulp of sour orange</td>
<td>60</td>
<td>66.7</td>
<td>80</td>
<td>81.3</td>
<td>13.5</td>
<td>15</td>
</tr>
<tr>
<td>3. Seed of sour orange</td>
<td>60</td>
<td>66.7</td>
<td>70</td>
<td>78.6</td>
<td>15.5</td>
<td>14</td>
</tr>
<tr>
<td>4. Midrib of cabbage leaf</td>
<td>70</td>
<td>71.4</td>
<td>50</td>
<td>70</td>
<td>15</td>
<td>13.5</td>
</tr>
<tr>
<td>5. Root of turnip</td>
<td>60</td>
<td>66.7</td>
<td>50</td>
<td>70</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>6. Leaf of mango-singara</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>70</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>7. Control</td>
<td>20</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>19.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Treatment</td>
<td>LT 50 Days</td>
<td>Slope</td>
<td>Confidence Limits (64% 0.95)</td>
<td>% Concentration 10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Leaf of oca</td>
<td>2.325</td>
<td>3.3</td>
<td>1.038 - 3.514</td>
<td>4.37 - 4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Algae of oca</td>
<td>0.65</td>
<td>0.6</td>
<td>0.490 - 0.849</td>
<td>0.36 - 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Seed of talk</td>
<td>0.850</td>
<td>1.6</td>
<td>0.650 - 1.150</td>
<td>0.46 - 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Seed of winter</td>
<td>0.850</td>
<td>1.6</td>
<td>0.650 - 1.150</td>
<td>0.46 - 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Root of winter</td>
<td>0.850</td>
<td>1.6</td>
<td>0.650 - 1.150</td>
<td>0.46 - 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Root of nang</td>
<td>0.850</td>
<td>1.6</td>
<td>0.650 - 1.150</td>
<td>0.46 - 0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. LT 50 values calculated after reading 50% decontamination from the initial values on control of Rhizopus communis treated with different materials.
Fig 1. Probit-regression-time showing response of 2nd instar *S. littoralis* larvae fed on castor oil leaves treated with different plant extracts.
Fig 2. Probit-regression-time showing response of 4th instar *S. littoralis* larvae fed on castor oil leaves treated with different plant extracts.
492 TOXIC ACTIVITY OF SIX PLANT WATER EXTRACTS AGAINST SPDOPTERA LITTORALIS (LEP., NOCTUINAE) IN THE LABORATORY

REFERENCES

سماية ستة مستخلصات نباتية مالية ضد دودة ورق الفطن في المعمل

شمسية سعيد - يعقوب و أسامة سامي الحافين

معهد بحوث وقاية النباتات - مركز البحث الزراعي - الدك - جبزة

انظرت سماية ستة مستخلصات نباتية مالية على العشرين الثاني والرابع ليرقات دودة ورق الفطن تحت ظروف المعمل على درجة حرارة 27° C، 0-50% رطوبة نسبة، وهي أوراق نبات الدودونيا، ب ودراسما على شعيرية الكرز، العرق الوسطى لأوراق الكرز، ودودة الفطن، وأوراق شجرة المانجو صنف متجمدة. وفق المستخلص المالي لكل من أوراق نبات الدودونيا ولب شعيرية الكرز أعلى نسبة موت (70% 80%) في العصر الثاني والرابع على الترتيب ونسبة نقص 75%.

80% عن المقارنة في نفس المربين بالإضافة إلى ذلك تظهر المستخلص المالي للدودونيا تأثيراً أدى إلى تقصير فترة العمر البرمائي (13.5 يوم)، وأدى أيضاً إلى انتظام فترة العمر المثلى (15 يوم). بينما أيضاً سجل أقل متوسط لوزن الخريزة 148 văn، جم. وكانت أقل مدة لقصيرة عمر الفئرانة 4.3 يوم عند المعاملة بالمستخلص المالي لأوراق الدودونيا.

وأكدت نتائج الاختبارات الحيوية النتائج السابقة حيث كانت أقل فترة زمنية لإزالة نقصف تدام البرقات الممثلا 4.42 يوم للعامل البرمائي الثاني والرابع على الترتيب كنتيجة للمعاملة بالمستخلص المالي لأوراق الدودونيا. 10%