
ELHAM F. ABDEL-RAHIM, A. M. HANAFY AND G. A. MORSI

Plant Protection Res. Institute, ARC, Dokki Giza

(Manuscript received 15 November 2007)

Abstract

The toxic effect of Spinosad against the second and fourth instar larvae of *Agrotis ipsilon* was evaluated in laboratory tests. The 2nd and 4th instar larvae were fed for 48h on castor leaves *Ricinus communis* were dipped for 5 seconds in eight concentrations of the tested compound ranging from 1.95 to 250 ppm. Spinosad exhibited higher toxicity against the second instar larvae than the 4th instar ones. With LC50 values of 7.8 and 30 ppm, respectively. The biological activities of the treated larvae were obviously affected specially with the second instar treatment of *A. ipsilon*. Therefore, the larval and pupal durations were prolonged, the pupation, and adult emergence percentages were depressed, the pupal weight was decreased and hence, pupal and adult malformations percentage were produced. Also, the fecundity and fertility were inhibited and adult longevity was shortened. The sex ratios of males and females of the emerged adult were more affected in respect to control.

INTRODUCTION

The black cutworm *Agrotis ipsilon* is a serious pest of several important vegetable and field crops in Egypt, such as cotton, soybean, corn, potatoes and tomatoes. Control of this pest, usually depends exclusively on conventional insecticides. In the developing countries, pesticides have played an extremely important role to maintain the high agricultural productivity. But the massive application of pesticides has created serious problems such as the build-up of pest resistance, the upsetting of natural balance, acute and chronic hazards to man and animals. The use of natural products of plant origin is a new trend that preserve the environment from contamination with harmful toxicants. The most familiar one of these chemicals in the recent years is azadirachtin that isolated from the fruits of *Melia azedarach* and seeds of *Azadirachta indica* (Meliaceae). Azadirachtin exhibits extremely low acute mammalian toxicity yet it is very effective as control agent for many insect groups (Champagne et al. 1989). Besides azadirachtin, other plant-derived extracts and
phytochemicals have been shown to possess insecticidal activity and some morphogenetic effects against Lepidoptera insects especially *A. ipsilon* (Abdel-Rahim, 2002 and Abo-El-Gher et al., 1994). Also, biotic compounds played an important role in pests control. Among these compounds, Spinosad, gets its name from the microbe that produces it, a soil-dwelling bacterium called *Saccharopolyspora spinosa*. Spinosad possess less risk than most insecticides to mammals, birds, fish, and beneficial insects. It was used for control of Lepidoptera insects (Gomaa, 2005 and Temarali, 2007). It is already approved for use on more than 100 crops, including apples, almonds, citrus, eggplants, tomatoes, and cotton.

The aim of the present study is to evaluate the insecticidal properties of a biotic compound, Spinosad, against the second and the fourth instar larvae of *A. ipsilon*.

MATERIALS AND METHODS

1-Insect rearing

Rearing of *A. ipsilon* in the laboratory was followed according to Abdel-Salam (1980). The eggs were maintained in small jars (8x16 cm) covered with muslin and provided with a tissue paper in the bottom to absorb humidity and fresh castor leaves, *Ricinus communis* were used as food for hatched larvae. The newly hatched larvae were carefully transferred by a fine-hair brush on the fresh castor leaves and a new tissue paper. The jars were daily examined and cleaned, and the food and tissue papers were renewed until the larvae develop to 3rd instars then the tissue paper was put over a saw dust layer in the bottom to absorb humidity for the young larvae. At the 6th larval instars, the number of larvae must be reduced to about twenty larvae per jar to avoid larval cannibalism and incubated at 25°C and 70-75% R.H. until the pupation. The newly formed pupae were maintained inside another clean jars over tissue paper until the moths emergence. The newly emerged moths were mated within a large glass jar (11x16 cm) provided with a cotton piece soaked in 10% sugar solution as a feeding source and muslins as oviposition substrate for the moths. The second and fourth instar larvae were used for the bioassay test.
2-Insecticide used

Trade name: The insecticide was introduced by Dow Agro Sciences for control lepidopterous pests in cotton under the trade name Tracer (Thompson et al., 1997)

Chemical name: The name spinosad is derived from combining the characters from Spinosyn A and D

Empirical formulae: Spinosyn A: C41H65NO10

:Spinosyn D: C42H67NO10

Structural formulae:

![Spinosyn A](image1)

![Spinosyn D](image2)

Molecular weight: Spinosyn A: 731.98

: Spinosyn D: 745.99
3- Test procedures

Series of different concentrations the tested of the compound 1.95, 3.9, 7.8, 15.6, 31.3, 62.5, 125 and 250 ppm were used. The eight concentrations were prepared on the active ingredient basis (p.p.m) by diluting the compound in the water as a solvent. The leaves of castor dipped for 5 seconds in each concentration, then left to dry in air current for about 1hr. Also, castor leaves were dipped in only distilled water used as control. About forty larvae in two replicates of each second and fourth instar larvae of each concentration of the tested compound and of control were used. After 48h, the treated leaves was replaced by another untreated ones and the larvae fed on it until the pupation. The jars were examined daily to determine the larval mortality. Also, the observed malformations were recorded and photographed.

4- Statistical analysis

The total percent of the larval mortality after 48h were recorded and corrected according to the check by using Abbott formula (Abbott, 1925). The data were then analyzed using the probit analysis (Finney, 1971) and LC-P lines (toxicity lines), and the LC50 values were estimated for tested compound. The different biological effects such larval and pupal duration, pupation and adults emergence percentage, pupal weight as well as adult fecundity, fertility, longevity, sex ratio were studied at the LC50 values. The data of the biology statically calculated through SPSS 10 for windows computer program to determined the F-value, P-value and I.S.D(least significant difference at 0.05 or 0.01 freedom degrees).

RESULT AND DISCUSSION

1- Toxic effect

Data presented in Table (1) demonstrated that the mortality percentages for 2nd and 4th instar larvae of A. ipelan treated with the Spinosad were 100, 90, 70, 60, 50, 30, 15 and 100, 90, 70, 50, 30, 10, 5%, respectively at the tested concentrations. Spinosad was more effective against the second instar larvae of, where the LC50 value recorded was 7.8 ppm, and was less effective on the fourth instar, where the LC50 value was 30 ppm (as showed in Table.1 and Fig.1).
Table 1. Insecticidal activity of Spinosad against the second and the fourth instar larvae of Agrotis ipsilon.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2nd instar</th>
<th>4th instar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con. %</td>
<td>LC₅₀ ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value</td>
</tr>
<tr>
<td>Spinosad</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>62.5</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1.95</td>
<td>15</td>
</tr>
</tbody>
</table>

The obtained results were similar to those obtained by Temara (2007) who showed that a radiant 12 SC (new generation) of Spinosad was 7 times stronger than Spintor 24 SC (old generation) to control of egg masses of Spodoptera littoralis in laboratory tests based on the LC₅₀ values. Also, he found that the radiant 12 SC was 5 times stronger (it was active at 5.76 ppm) than the Spintor 24 SC (it was active at 28.8) in the field. Also, Temara (2003) proved that the field strain of the cotton leaf worm S. littoralis (known to be tolerant or resistant to most of the conventional insecticides) was to be more susceptible to Spinosad (Spintor, 24 SC) than the laboratory strain (known as susceptible to conventional insecticides). Also, Abdel Rahman et al. (2002) demonstrated that the Neem Azal formulations applying at higher doses T/S (20 and 25 ppm) were the most effective against the Pink bollworm Pectinophora gossypella. Also, Dhawan et al. (1998) showed that all the 3 formulations of B. thuringiensis subsp. kurstak (Dipel, Bioesp and Biolep), neem, Azadirachta indica (Nimbicide, Neemgold and Neernazal) and the insect growth regulators (flufenuron, flufenoxuron and RH-2485 a diacyclhydrazine) were effective against H. armigera at 1.50 kg/ liter as quinalphos insecticide against the young larvae. Salama and Ahmed (1997) recorded a very high insecticidal activity of methanolic extract of Melia azedarach at high concentrations against Spodoptera littoralis larvae. Percentage of mortality was 100% at 50 p.p.m. and 16% at 10 p.p.m. David et al. (1996) reported that the two formulations of Spinosad NAF-85 and
INSECTICIDAL EFFICACY OF THE BIOTIC COMPOUND, SPINOSEAD,
AGAINST THE SECOND AND FOURTH INSTAR LARVAE OF THE BLACK CUTWORM,
AGROTIS IPSEOLON (Hornem.) (LEPIDOPTERA: NOCTUIDAE)

Mortality (%)

Fig. 1. LC50 of 2nd and 4th instar larvae of Agrotis ipseolon treated with spinosad.
NAF-127 were effective for control of black cutworm, *Agrotis ipsilon*, and Sod webworms, *Agrotis palustris*, the NAF-85 was active at 15 ppm, while NAF-127 was active at 8 ppm. Also Abo-El-Ghur et al. (1994) indicated a reduction in the larval survival of 4th instar of *A. ipsilon* at concentrations of 0.01, 0.025 and 0.01, 0.05% of the ethanolic extracts of *Melia azedarach* and *Vinca rosea*, respectively.

Table 2. Latent effect of Spinosad at its LC50 values against the 2nd instar larvae of *A. ipsilon*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Larval duration (days)</th>
<th>% Pupation</th>
<th>Pupal duration (days)</th>
<th>Pupal weight (mg)</th>
<th>% Mort emergence</th>
<th>± SD</th>
<th>± SD</th>
<th>± SD</th>
<th>± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinosad</td>
<td>34 ± 0**</td>
<td>50±10**</td>
<td>14±7.1*</td>
<td>13.5±3.1*</td>
<td>227±23.3**</td>
<td>58.4±21.3**</td>
<td>26±4.0*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>16 ±1.7</td>
<td>100±0.0</td>
<td>0.0</td>
<td>7.8±2</td>
<td>439±35.2</td>
<td>100±0.0</td>
<td>0.0±0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F value</td>
<td>99.040</td>
<td>75.000</td>
<td>6.009</td>
<td>5.113</td>
<td>15.851</td>
<td>9.455</td>
<td>6.457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.055</td>
<td>0.033</td>
<td>0.004</td>
<td>0.014</td>
<td>0.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD0.05</td>
<td>3.3</td>
<td>16.3</td>
<td>10.8</td>
<td>4.1</td>
<td>98</td>
<td>24.3</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>5.0</td>
<td>24.7</td>
<td>15.6</td>
<td>5.0</td>
<td>14.0</td>
<td>36.7</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** = Highly Significant (p<0.01)
S.D. = Standard deviation
L.S.D. = Least significant difference

Note: Mallo. = Malformation%
Table 3. Latent effect of Spinosad at its LC50 values against 4th instar of A. ipallon.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Larval duration (days) ± SD</th>
<th>% Pupation ± SD</th>
<th>Pupal duration (days) ± SD</th>
<th>Pupal weight (mg) ± SE</th>
<th>% Meth emergence ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Normal, Normal)</td>
<td>(Normal)</td>
<td>(Normal)</td>
<td>(Normal)</td>
<td>(Normal)</td>
</tr>
<tr>
<td>Spinosad</td>
<td>21.0 ± 1**</td>
<td>52 ± 6**</td>
<td>9±11**</td>
<td>12±2**</td>
<td>65 ± 10**</td>
</tr>
<tr>
<td>Check</td>
<td>15.0 ± 1.2</td>
<td>109 ± 0.0</td>
<td>0.0±0.0</td>
<td>7.0± 2</td>
<td>492 ±15.6</td>
</tr>
<tr>
<td>P-value</td>
<td>0.060</td>
<td>0.000</td>
<td>0.001</td>
<td>0.018</td>
<td>0.034</td>
</tr>
<tr>
<td>P-value</td>
<td>0.060</td>
<td>0.000</td>
<td>0.001</td>
<td>0.018</td>
<td>0.034</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>3.1</td>
<td>13.0</td>
<td>3.1</td>
<td>3.5</td>
<td>65</td>
</tr>
<tr>
<td>LSD 0.01</td>
<td>4.5</td>
<td>18.7</td>
<td>4.7</td>
<td>5.2</td>
<td>119</td>
</tr>
</tbody>
</table>

** = Highly Significant (p<0.01)
S.D. = Standard deviation

2. Latent effect

2.1. Larval and pupal periods

Data in Tables (2 & 3) showed that the larval periods of the second and fourth instars of Agrotis ipsilon larvae treated with the LC50 values of Spinosad were significantly (p<0.01) increased. The effect was more pronounced with the treated second larvae instar where the larval period was elongated to 34 days as compared to 16 days for the control, whereas the averaged larval periods for the 4th instar larvae Spinosad-treated and check treatments were 21 and 15 days, respectively.

Also, Table (2 & 3) indicated that the larval treatment of the second and fourth instar of A. ipsilon with Spinosad highly significantly (p<0.01) increased the pupal periods. The pupal period averaged 13.5 and 12 days for pupae treated as 2nd and 4th larvae instar, respectively with Spinosad, as compared to 7.8 and 7.0 days for pupae were produced from untreated second and fourth instar larvae, respectively.

These results are similar to those obtained by Abdel-Rahim (2002) who recorded an increase in the larval and pupal periods of A. ipsilon as result of the larval treatment with Ambrosia maritima extract by a contact method. Abdel – Rahman et al. (2002) reported that larval mortality, viable pupation of pink bollworm were
adversely affected by neemazal formulations (T, F and T/S) in dose and time
dependent manners of the three tested Neemazal formulations. T/S was the most
effective one. The larvae treated with the higher doses of Neemazal T/S (20 and 25
ppm) failed to molt to pupal stage and were termed as permanent larvae. Ivan and
Jesus (2000) demonstrated that cotton treated with Spinosad in Texas had fewer
damaging bollworm and budworm larvae than plots treated with the other pesticides
and they suggested that Spinosad prevented small larvae from becoming larger and
more damaging. Also, Jagannadh and Nair (1992) recorded a prolongation in the
larval period of 5th and 6th instars Spodoptera mauritica that injected with azadirachtin
at doses 0.5, 1 and 2mg.
2.2. Pupation and Pupal weight

Tables (2 & 3) demonstrated that the treatment of the 2nd and 4th instar larvae
of A. ipsilon with Spinosad at its LC50 value significantly (p<0.01) reduced the
pupation percentages which were 50 and 52% for pupae treated as 2nd and 4th
larvae instar, respectively, as compared to 100% of the control.

Likewise, the larval treatment of 2nd and 4th instar with Spinosad at the LC50
resulted in highly significant (p<0.01) reduction in the pupal weight of the resulting
pupae (Table 2 & 3). The treated second larvae instar was the most suppressive on the
pupal weight. It averaged 227 mg as compared to 439mg pupal weight of the check.
Whereas, the fourth larvae instar treatment had the least effect on the pupal weight
it averaged 424mg, as compared to 492mg of control.

These results are agree with those obtained by Abdel- Rahim (2002) who
recorded a reduction in both pupation and pupal weight of the resulting pupae of A.
ipsilon treated as 4th instar larvae with A. maritima extract by a contact method. Also,
Jagannadh and Nair (1992) reported that an injection of 2mg of azadirachtin within 5
larvae mauritica larvae prevented the normal pupation in the larvae of all age groups (0, 1, 2-
day).

2.3. Moths emergence

Data in Tables (2 & 3) showed that the second and fourth instar larvae of A.
ipsilon treated with Spinosad at the LC50 values induced highly significant (p<0.01)
reduction in the moths emergence rate. The treated second larvae instar had the
highest effect on the moths emergence rate, where it averaged 59%, while it reached
to 65% for adults treated as 4th larvae instar with this compound, as compared
to 100% adults emergence of the check.

These results were agree with those obtained by Abdel – Rahman et al.
(2002) who reported that the adult emergence of pink bollworm P. gossypii were
adversely affected by Nemazal formulations (T, F and T/S) in dose and time dependent manners of the three tested Neemazal formulations. The percent of individuals failed to turn to active adults reached its maximum values 73.33, 62.5 and 100% at 100 ppm Neemazal T, 300 ppm Neemazal F and 20 ppm Neemazal T/S, respectively. Also, Abdel-Rahim (2002) recorded that the larval treatment of *A. ipsilon* with *A. maritima* extract induced the highest reduction in the adult emergence by a contact method. Also, Abo-El-Ghar et al. (1994) demonstrated a decrease in the adult emergence of *A. ipsilon* treated as 4th instar larvae with petroleum ether extracts of *L. cylindrica*, *A. majus*, *C. elegans* and *V. rosea*, as compared to control.

2.4. Morphogenetic effects

Data presented in Tables 2 & 3 demonstrated that the larval treatment of 2nd and 4th instars of *A. ipsilon* with Spinosad at the LC50 values induced highly significant \((p<0.01)\) increase in the pupal malformations. The treated second larvae instar induced the highest percent, it reached 14%, as compared to 0% pupae malformations of the check, whereas, it reached 9% for pupae treated as 4th instar larvae with this compound.

With regard to the adult malformations (Tables 2 & 3), it was found that the larval treatment of 2nd and 4th instars of *A. ipsilon* with Spinosad at the LC50 value caused highly significant \((p<0.01)\) increase of adult malformations. The treated second larvae instar had the greatest effect in adult malformations inducing, it reached 26%, as compared to 0% of control while, it reached 14% emergence for adults treated as 4th larval instar with this compound.

These results are similar to that obtained by Abdel-Rahim (2002) who indicated that *A. maritima* extract was the most potent extract in inducing noticeable malformations in both pupae and adult stages of *A. ipsilon* that treated as 4th instar with this extract by a contact method. Also, Abo-El-Ghar et al. (1994) obtained the same results on the *S. littoralis*.
Fig. 1. Malformed prepupae had larval's legs and black body leading to death.

Fig. 2. Abnormal pupae showing body shrinkage.

Fig. 3. Malformed pupae failed to cast the larval skin.

Fig. 4. Larval-pupal intermediates.

Fig. 5, 6, and 7. Malformation of adults appeared as adults had strongly deformed poorly developed wings or twisting wings.

Fig. 8. Or adults had weakly deformed wings.

Fig. 9 and 10. Normal pupae and adults.

Fig. 2. Indicated the pupal and adult malformations of A. ipsilon treated as second and fourth instar larvae with Spinosad.
Malformations *A. ipsilon* pupae resulting from the larval treatment of 2nd and 4th instars in the present work mostly appeared malformed prepupa had larval larval legs and blackening of the body leading to death (fig.1) or abnormal pupae showing body shriveling (fig.2) or malformed pupae failed to cast the larval skin (fig.3) or larval pupal intermediates (fig.4). The malformations of adults however appeared often as it had strongly deformed poorly developed or twisting wings (fig.5, 6 and 7) or had weakly deformed wings (fig.8) as compared to normal pupae and adults (fig. 9 and 10), as showed in fig.2.

Table 4. Latent effect of Spinosad at its LC50 values against the 2nd instar larvae of *A. ipsilon*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fecundity</th>
<th>Fertility</th>
<th>Longevity</th>
<th>Adult sex ratio(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± S.D.</td>
<td>Mean ± S.D.</td>
<td>Mean ± S.D.</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td>egg/l</td>
<td>egg/l</td>
<td>(Day)</td>
<td></td>
</tr>
<tr>
<td>Spinosad</td>
<td>37.7 ± 20"</td>
<td>51 ± 6.4"</td>
<td>6 ± 1.2"</td>
<td>45.1</td>
</tr>
<tr>
<td>Check</td>
<td>1137± 260</td>
<td>1075± 236"</td>
<td>12.3± 1.5</td>
<td>70</td>
</tr>
<tr>
<td>F value</td>
<td>57.2</td>
<td>56.1</td>
<td>15.623</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>L.S.D at 0.05</td>
<td>30.7</td>
<td>24.5</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>0.0 1</td>
<td>427.1</td>
<td>415.9</td>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

** = Highly Significant (p<0.01) * = Significant (p<0.05)
S.D.=Standard deviation Malfo.= Malformation%
L.S.D. = Least significant difference

Table 5. Latent effect of Spinosad at its LC50 values against 4th instar of *A. ipsilon*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fecundity</th>
<th>Fertility</th>
<th>Longevity</th>
<th>Adult sex ratio(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± S.D.</td>
<td>Mean ± S.D.</td>
<td>Mean ± S.D.</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td>egg/l</td>
<td>egg/l</td>
<td>(Day)</td>
<td></td>
</tr>
<tr>
<td>Spinosad</td>
<td>117 ± 92"</td>
<td>68 ± 14.1"</td>
<td>7.3±2.4"</td>
<td>45.5</td>
</tr>
<tr>
<td>Check</td>
<td>1287± 260</td>
<td>1232± 236</td>
<td>11.5± 2.1</td>
<td>70</td>
</tr>
<tr>
<td>F value</td>
<td>57.987</td>
<td>70.744</td>
<td>4.006</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>L.S.D at 0.05</td>
<td>318.2</td>
<td>274.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>402.1</td>
<td>415.9</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

** = Highly Significant (p<0.01) * = Significant (p<0.05)
S.D.=Standard deviation Malfo.= Malformation%
L.S.D. = Least significant difference
2.5. Adult fecundity and fertility

Treatment of A. ipsilon 2nd and 4th instar larvae with Spinosad induced highly significant (p<0.01) reduction in the fecundity of adult females (Tables 4 & 5). The least number of eggs averaged 37.7 eggs/female laid by adults treated as 2nd larval instar, as compared to 1137 eggs/female laid by untreated adults, whereas the eggs number averaged 117 eggs/female laid by adults treated as 4th larval instar, as compared to 1287 eggs/female laid by untreated adults.

Likewise, the larval feeding of 2nd and 4th instar larvae of A. ipsilon on Spinosad induced highly significant (p<0.01) reduction in the fertility of eggs (Tables 4 & 5).

The least number of viable eggs (51 eggs/female) laid by adults treated as 2nd instar larvae with this compound, as compared to 1075 eggs/female of the check, while the larval treatment of 4th instar larvae inhibited the fertility to average 60 eggs/female, as compared to 1212 eggs/female of control.

The effects of Spinosad were comparable to those mentioned by Pineda et al. (2004) who reported that both Spinosad and methoxyfenozide reduced in a dose dependent manner the fecundity and fertility of S. littoralis adults when treated oral and resudually and they concluded that the combination of lethal and sublethal effects of methoxyfenozide and Spinosad might exhibit significant effects on the population dynamics of S. littoralis. Also, Abdel-Rahim (2002) demonstrated a significant decrease in the adult fecundity and fertility of A. ipsilon treated as 4th instar larvae with both A. maritima and C. fistula extracts by a contact method. Also, the same results were obtained by Hashem et al. (1994) who recorded a reduction in both fecundity and fertility as a result of abnormalities in the ovaries of S. littoralis adults fed as 4th instar larvae on artificial diet mixed with 2% of fruit extract of M. azedarach for 72h.

2.6. Adult longevity

Tables (4 & 5) indicated that the larval treatment of 2nd and 4th instar larvae of A. ipsilon with Spinosad decreased the longevity of the emerged adults. The treatment of second instar larvae highly significantly (p<0.01) reduced the longevity to average 6 days, as compared with 12.3 days adults longevity of the check, while the larval treatment of 4th instar significantly (p<0.05) decreased the adults longevity to average 7.3 days, as compared to 11.5 days of the check.

These results are in agreement with that obtained by Abdel-Rahim (2002) who demonstrated a significant decrease in the adult longevity of A. ipsilon by the larval treatment of 4th instar with A. maritima and T. tipu extracts by a contact method.
2.7. Adult sex ratio

Data in Table (4 & 5) showed that the larval treatment of 2nd and 4th instar of A. ipsilon with Spinosad at LC$_{50}$ values shifted the sex ratio, it decreased the males and increased the females percent, as compared with the check. The effect was similar for adults treated in either 2nd or 4th larval instar, where it decreased the adult males to 45.1 and 45.5% for adults treated as 2nd and 4th larval instar, respectively, as compared to 79% of adult males of the check. The adult females however, increased to about 55% for the adults treated in both 2nd and 4th larval instar, as compared to 30% of adult females of the check.

These results are similar to those obtained by Abdel- Rahim (2002) who recorded shifting in the sex ratio in favor of females to more than two folds, as compared to the check of A. ipsilon adults treated as 4th instar with Ambrosia maritima and Cassia fistula extracts.

CONCLUSION

The results of the present work demonstrated that the compound was effective against the survival and biology of Agrotis ipsilon, especially it had more toxic effect against the used second instar larvae and also, affect most of the tested biological activities of the insect. Whereas a solution of the compound at LC$_{50}$ values had the highest effect on the various biological activities of this insect. Thus, the compound may added at concentration, 250 ppm (lethal concentration of 100% of the two 2nd and 4th instar larvae) around the aerial parts (roots) or sometimes the leaves that may invade by the pest. Therefore, this compound was effective if applied within the cutworm baits or spray as replacement means for the used synthetic insecticides (carbaryl e.g. Sevin or permethrin, chlorpyrifos, or diazinon) for control of the mentioned pest that caused serious effects on the environment.
REFERENCES

تقييم الكفاءة الآلية للمركب الحيوي (أسينبيسان) ضد بروتات العمر الثاني والرابع
للدواء القاضية: أترونت لسيلون

فهاد فاروق محمود عبد الرحيم، عهن محمد حفصي، جمال عبد الناصر مرسي

محمود توفيق أيامات - مركز البحث الزراعي - جزيرة

أجريت هذه الدراسة تحت تدقيق القضاء السامي للمركب أسينبيسان ضد بروتات العمار
التاني والرابع للدواء القاضية. عُلِّق بروتات العمر الثاني والرابع لمدة 48 ساعة على ورق خروع
 ثم تم تغذية المركب في النباتات في درجات تتراوح بين 1.5 و5 مل بتركيز من 0.955 و250 ppm
بتحقيق تركيزات تراوح بين 1.5 و4.0. كان التركيز القصفي (IC50) للمركب كان 7.5 ppm.

بينما كان التركيز القصفي لبروتات العمر الثاني وبروتات العمر الرابع تراوح بين 1.5 و4.0

تأثرت المراقب البيولوجية للبروتات المعاكسة. معاكسة بروتات العمار الثاني ودقيقة في
ذلك في طول العمر القصير والبدائي وانخفاض في نسب الطين والأخضرات واللحوم في قرن
الخربز وتأثر نسبة من الشروط المدارية والخاصة في ممارسة يلتقي في معدل وضع الضغط.

ودرجة الخصوبة وقصر في عمر الطيور النضجية. كان ذلك تأثير للمنضج الأنسجية المكثفة والأداة
مقارنة بالمزيد. بينما وجد في أغلب الأنشطة البيولوجية المختارة أن معاكسة العمار الرابع كانت
قلً، تأثيراً.