LABORATORY EXPERIMENTS OF MISCELLANEOUS OILS, IGRS BIO-EFFICACY AND THEIR JOINT EFFECT AGAINST THE SOFT SCALE INSECT PULVINARIA TENUIVALVATA (NEWSTEAD) INFESTING SUGARCANE IN EGYPT

HARISS, H. M2, EKRAM I. HELMY1 AND S. M. ABDEL-WAHED1

1. Fac. Agric., Ain – Shams Univ.
2. Plant Protection Research Institute, ARC, Egypt

(Manuscript received 10 May 2005)

Abstract

The mixture of miscible oils, IGRs and the miscible oils alone demonstrate successful performance against Pulvinaria tenuivalvata (Hemiptera: Homoptera: Coccidae) infesting sugarcane leaves. However, IGRs alone gave moderate effect in this respect.

Reduction % in the red striped soft scale insect individuals two weeks after treatment were 97.9%, 96.2%, 83.4% and 92.8% for of the mixture of Super Misrona and Applaud, Admiral and Super Misrona and Super Royal alone respectively. However, Applaud and Admiral alone demonstrate 66.3% and 64.7%. Results also, clearly show that, the nymphal stages, harbaured significantly affected by the tested treatments, followed by adult females, females laying eggs came next. No phytotoxicity was observed on the treated sugarcane leaves with the all tested treatments. Whereas, there were different affects on the associated natural enemies, the endoparasitoid: Coccophagus scutellaris and the predator, Ophus sp. Miscible oils alone and mixture with IGRs can be recommended for IPM program against sugarcane pests to minimize the control costs and environmental pollution. In addition to their safety effect on the beneficial organisms.

INTRODUCTION

Sugar cane, Saccharum officinarum L. is considered the major source of sugar production in Egypt. Insect pests are one of the main limiting factors affecting sugar production. The red striped soft scale insect, Pulvinaria tenuivalvata (Newstead) (Hemiptera: Homoptera: Coccidae) is recently considered as the most serious insect pest infesting sugarcane plants in upper Egypt.

In Egypt the soft scale insect Pulvinaria elongata (Newstead) is recorded for the first time in (1992). It attacks the sugarcane leaves in Agricultural Experimental station at Sabahia, Alexandria. Karam and Abu-Elkhair (1992).

Coccophagus sp is cosmopolitan genus in family Aphelinidae. Many of its species, which are frequently encountered parasitoids of soft scales, which have been used successfully for biological control programs in many sugarcane cultivated areas in the world. Manj and Krishna (1999), and Abdel-Baky et al. (2003).

The aphelinid, Coccophagus scutellaris attack coccid, Pulvinaria tenualvata which considered as one of the most important insect pests of sugarcane in Egypt. Percentage of parasitism reached 95% in the 2nd nymph of P. tenualvata. It can be considered as a potential biological control agent for this pest. Abdel-Samea (2003).

The traditional method for controlling Coccid pests using highly toxic O.P compounds for several times, dimethoat, quinalphos, methyl parathion, diazinon others, according to Gupta and Singh (1988), Srivastava et al. (1989) and Gui et al. (1987), Considerable problems arose from the continued application of these insecticides, the development of resistance by insects, kill natural enemies, cause environmental pollution with high pesticide residues in the plants. The effectiveness of low toxic compounds, plant extracts, IGRs, liquid soap and the local mineral oils deserve the attention of many investigators in Egypt namely, El-Sebae et al (1976) Aly et al (1984), Hassan et al (1994), Heimy et al (2001a, 2001b) and Kwaiz et al. (2004).

The present laboratory investigation was carried out to evaluate the efficacy of two local miscible oils and two IGRs and the joint effect of IGRs with Super Misrana oil against Pulvinaria tenuivalvata (Newstead) infesting sugarcane leaves. The side effect of the tested treatments on sugarcane leaves and their deleterious effect on the associated natural enemies, the endoparasitoid, Coccophagus scutellaris and Orius sp predator were also investigated.

MATERIALS AND METHODS

Laboratory experiment was conducted in May 2002 at plant protection research Institute, PPR, in Dokki, Giza, Egypt. The efficiency of two local miscible oils namely, Super Royal, Super Misrana, two IGR, Applaad, Admiral and their mixed with Super Misrana oil, as lab. spraying against the red striped soft scale insect, Pulvinaria tenuivalvata (Newstead) infesting sugarcane leaves. Seven treatments were tested including the untreated check (control).

1. **The tested treatments were as follows**:
 - Super Royal oil: produced by petroleum corporation society consist of 95% local mineral miscible oil + 5% emulsifier, the rate of use was 1.5%.
 - Super Misrana oil: produced the Misr petroleum Co. Egypt. Contain 95% local mineral Miscible oil + 5% emulsifier, the tested rate was 1.5%.
• Applaud (buprofezin) developed by Nihon Nohyaku Co. Tokyo, Japan. The tested rate was 0.5%.
• Admiral (pyriproxyfen) 10% EC produced by Sumitomo Chemical Co. Osaka, Japan. The tested rate was 0.5%.
• Super Misrona oil 1.5% + Applaud 0.5%.
• Super Misrona oil 1.5% + Admiral 0.5%.
• (control) Sprayed with water.

Samples: about 150 infested leaves were riched from sugarcane field in Nagh-Hammady district, Qena Governorate. were transferred to the laboratory in paper bags carefully examination. Samples of five leaves replicated four times per treatment were picked at random from the field sample.

Laboratory spraying: was conducted by one litter plastic sprayer on the both upper and underside sugarcane leaves. Whereas, the laboratory conditions was under 24 °C ± 1 and 64 ± 1 % R.H.

Laboratory examinations were carried out by means of a stereo binocular microscope before laboratory treatment to keep index of pre treatment count and 3, 7, 10 and 14 day after as post treatment counts. All alive *P. tenuivalvata* (Newstead) different stages, nymphs, adult females and the ovipositing females were counted and recorded per leaf.

The statistical analysis adopted: percentage of reduction in *P. tenuivalvata* different stages was calculated according to Stafford and Summers (1963) equation. The least significant difference (L.S.D.) between treatments efficacy and between the different stages affect was considered when "F" value was significant.

For the phytotoxicity of the tested treatments on the treated sugarcane leaves and along with the combined deleterious effect on the most effective parasitoid, *Coccophagus scutillaris* and the *Orius* sp predator were also. Investigated.

RESULTS AND DISCUSSION

The bio-residual activity of the tested treatments:

The careful examination data tabulated in table 1 & 2 for the red striped soft scale insect, *Pulvinaria tenuivalvata* (Newstead) infested the sugarcane leaves collected from Nagh-Hammady district, Qena Governorate to evaluate the efficacy of six different treatments are tabulated in tables (1 & 2).

Table (1) showed that, the average number of alive *P. tenuivalvata* different stages per leaf for both the pre-treatment count and four post-treat. counts 3, 7, 10 and 14 days after application. In addition to the average number of alive both, *Coccophagus scutillaris* in all stages and *Orius* sp associated with this pest.
The data in table (2) demonstrate the reduction percentage in *P. tenuivalvata* different stages after laboratory experiment to evaluate the efficacy of six treatments. Also, the rate of parasitism and predacity, results could be summarized as follows.

Excellent results were recorded in case of Super Misrona oil when mixed with Applaud and Admiral. Reduction % being (65.6 & 63.9) and (97.9 & 96.5) after 3 and 14 days of application respectively. Also, Super-Royal and Super Misrona oils alone demonstrate excellent bio-effect results. The reduction % were (63.3 & 61.8), (77.9 & 75.2) and (92.8 & 93.4) after 3, 7 and 14 days of application, respectively. However, Applaud and Admiral showed significant poor efficacy 3 and 7 days after treatment the reduction % being (37.6 & 38.1) and (42.2 & 43.8), respectively.

Whereas, they harbor moderate mortality values after 10 and 14 days, there reduction % were (53.8 & 54.5) and (66.3 & 64.7), respectively.

The statistical analysis of data was carried out and yielded highly significant differences between the first four treatments and the last two treatments, Applaud and Admiral. Slight differences was obtained between the mixture of oil and miscible oils alone.

Concerning the simultaneous effect of the tested treatment on the *P. tenuivalvata* different stages, was estimated, data in table (2) revealed that nymphal stages showed highly significant affect to the tested treatments. Females without and with eggs came next in this respect with significant affect between each other.

No phytotoxic symptoms were recorded for the infested and treated sugarcane leaves two weeks after spraying under the laboratory conditions 24°C ± 1 and 64 % ± 1 R.H.

Data presented in Tables (1 & 2) revealed that, no deleterious effect on the most effective parasitoid *Coccophagus scultilars* (Dalman) (Hymenoptera : Aphelinidae) two weeks after treatment. The pre mature stages numbers ranged between (11-15) individuals per leaf in case of the miscible oils alone and mixed with IGRs and (8-9) ind./ leaf in case JGRs alone, Admiral and Applaud respectively. However, the rate of parasitism was between (61.1 & 83.3) with the first case and (44.4 & 50) in the second.

Data tabulated in the same tables demonstrate that, the mean number of the most important associated predator, *Orius sp* (Hemiptera : Anthocoridae) ranged between (9-12) ind. per leaf when used mineral miscible oils alone or mixed with the IGRs and (5-7) in case of Admiral and Applaud two weeks after laboratory testing respectively. Reduction % were between (60-80) for the first case and between (33.3 – 46.7) for the second.
The results obtained of this investigation are in agreement with those obtained by Aly et al. (1984), Hassan et al. (1994), Mni and Krishnam (1999), Helmy (2001), Abdel-Samea (2003), and Kwai et al. (2004). They recorded that spray oils were successfully used for about twenty years against hard and soft scale insects, mealy bugs, thrips, whiteflies and mites on different crop and fruit trees.

The previous mentioned results could be concluded that, the summer miscible oils, Super Royal and Super Misrona alone or mixed with IGRs, Applaud or Admiral were more efficient on various developmental stages of the soft striped scale insect, P. tenuivalvata (Newstead) infesting sugarcane plants in addition to their quite safety effect on the associated natural enemies. They can be recommend in any integrated control program against this pest from early February till late May in Qena Governorate. Whereas, the sugarcane plants are not exceeded one meter high to achieve excellent results.

REFERENCES

Table 1. Average No. of alive *P. bennavallata* (Newstead) different stages on the sugarcane leaves based on pre and post treatment counts after laboratory treatment in May 2002.

<table>
<thead>
<tr>
<th>Treatments and rate of use</th>
<th>Pre. Treat. count</th>
<th>1st post treat. (7 days)</th>
<th>2nd post treat. (13 days)</th>
<th>3rd post treat. (19 days)</th>
<th>4th post treat. (25 days)</th>
<th>Mean No. of parasite and predator / leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Super Royal oil (95%) 1.5%</td>
<td>47</td>
<td>13</td>
<td>10</td>
<td>13</td>
<td>4.5</td>
<td>4.7</td>
</tr>
<tr>
<td>2- Super Hybrina oil (95%) 1.5%</td>
<td>45</td>
<td>11</td>
<td>9</td>
<td>13</td>
<td>4.8</td>
<td>4.3</td>
</tr>
<tr>
<td>3- Applied TSSC 0.5%</td>
<td>48</td>
<td>14</td>
<td>9</td>
<td>27</td>
<td>8.6</td>
<td>6.3</td>
</tr>
<tr>
<td>+- Admil 10% SC 0.5%</td>
<td>45</td>
<td>15</td>
<td>11</td>
<td>26</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>5- Super Mix. 1.5%</td>
<td>48</td>
<td>12</td>
<td>8</td>
<td>11.7</td>
<td>4.1</td>
<td>3.5</td>
</tr>
<tr>
<td>+- Applied 0.05%</td>
<td>46</td>
<td>13</td>
<td>11</td>
<td>22.5</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>6- Super Mix. 1.5%</td>
<td>46</td>
<td>11</td>
<td>8</td>
<td>22.3</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>+- Admil 0.05%</td>
<td>45</td>
<td>12</td>
<td>10</td>
<td>23.3</td>
<td>4.3</td>
<td>5.2</td>
</tr>
<tr>
<td>7- Control</td>
<td>45</td>
<td>11</td>
<td>8</td>
<td>22</td>
<td>4.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>

** Coccophagus scutellaris in all stages: larva, pupae and emerged hals.
Table 2. Reduction percentage in *P. tenuisalvata* (Newstead) infesting sugarcane leaves and their side effect on the associated parasite and predator after Lab, testing of certain safe scabsicides in May 2002.

<table>
<thead>
<tr>
<th>Treatments and rate of use</th>
<th>Reduction % in the alive P. tenuisalvata different stages / leaf days after treatment</th>
<th>% Parasitism and predacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st post treat.</td>
<td>2nd post treat.</td>
</tr>
<tr>
<td></td>
<td>Nym.</td>
<td>Ad. fem.</td>
</tr>
<tr>
<td>1: Super Royal oil</td>
<td>71.4</td>
<td>65.2</td>
</tr>
<tr>
<td>(25%) 1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: Super Mirone oil</td>
<td>70.3</td>
<td>63.3</td>
</tr>
<tr>
<td>(50%) 1.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: Admire 2.5%</td>
<td>43.8</td>
<td>38.5</td>
</tr>
<tr>
<td>0.07%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: Admire 10% Ec-</td>
<td>42.2</td>
<td>39.8</td>
</tr>
<tr>
<td>0.05%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5: Super Ms. 1.5%</td>
<td>75.6</td>
<td>65.5</td>
</tr>
<tr>
<td>+ Applied 0.05%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6: Super Ms. 1.5%</td>
<td>72.8</td>
<td>66.6</td>
</tr>
<tr>
<td>+ Admire 0.05%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean % of stages</td>
<td>62.7 a</td>
<td>56.5 b</td>
</tr>
</tbody>
</table>

L.S.D. at 0.05
- between stages: 1.097 = 1.928 = 1.176 = 1.029
- between treatments: 2.014 = 2.536 = 2.018 = 2.940
تقييم معمل للزیوت القابلة للإسطحبل ومنظمات النمو الحشریة ومخاليبها على
حشرة القصب الرخوة (Pulvinaria Tenuivalvata (Newstead))
حمام محمد نادر 1، إبراهیم أسامة حنی 1، سامح محمد عبد الواحد 1
1. كلیة الزراقة جامعة عین شمس 2. معهد بحوث وقاية الدیئات، مركز البحوث الزراعیة بجیزة، مصر

سجل أفضل النتایج عند استعمال الزیوت القابلة للإسطحبل المخلوطة مع منظمات النمو الحشریة وكذلك عند استعمال الزیوت المنفردة. بينما استعمال منظمات النمو الحشریة المنفردة كان لها
تأثير متوسط في مكافحة حشرة القصب الرخوة التي تسبب أوراق القصب.

كانت نسبة النجاح في التعداد 27.9 %، 23.4 %، 26.8 %، 20.5 %، 21.7 % في حالة زیوت مصور مصورا مخلوطة مع كل من منظم النمو أبود ، أدمیرال وفي حالة زیوت مصور وروبیال
منفردا على التوالي. بينما حققت كل من الأنابله والأمیرال المنفردة نسبة نجاح تقلیلها 27% و 24.7 % من مجموع الحشرات ، وذلك بعد أسبوعين من القبیم المملا. أوضحت النتایج كذلك دقة حساسیة
الأدوار تغییر المفاعلات المستخدمة بها فرق معنی کل من الأنبوب والأنابله والإناث الواصمة
للبيض.

لم تظهر أي آثار جانبیة على أوراق القصب التي تم مسحها حتى نهاية التجربة كنک تصل
نفاوت في كل من نسبة النجاح للطیبول Gecchaphagis scutellatus نماذج القصب في حالة
منظمات النمو الحشریة المنفردة.

نفس النتایج سجّلت مع بقة Orus sp 1 ، المقرسة للحشرة القصب الرخوة التي تسبب أوراق
القصب. وباعبا على هذا التقیم فیمكن التوصیة بإستعمال الزیوت القابلة للإسطحبل المنفردة أو
مخلوطة مع منظمات النمو الحشریة ؛ الأنبوب والأنابله في برامج المكافحة المکامنة لهذه الأدوار
الخطرة وكذلك يهدف تقلیل مكافحة القصب الناتج عن القصب الذي تسبب أوراق القصب السکری في مصر.