THERMAL AND PHOTODECOMPOSITION OF TWO ORGANOPHOSPHORUS INSECTICIDES

HEGAZY M.E.A.¹, SHOKR A.S.¹, ABDEL-SAMEI A.², MOHAMED M.M.Y.² AND NEVEEN S.A.²

¹ Central Agricultural Pesticides Laboratory, Agricultural Research Centre, Dokki, Giza, Egypt.
² Faculty of Science, Cairo University, Giza, Egypt.

(Manuscript received May 2000)

Abstract

This investigation was carried out to study the influence of different temperature degrees, short ultra-violet and direct sunlight on the rate of decomposition of diazinon and pirimiphos-methyl insecticides, which are widely used in Egypt to protect vegetable crops from economic pests. The results indicated that the increase of temperature degrees means an increase in insecticide residue loss. The percentage loss of diazinon and pirimiphos-methyl insecticides was reached 39.03% and 11.58% at 20 °C; 99.97% and 58.48% at 30 °C; 99.99% and 97.53% at 40 °C and 100%, and 99.90% at 50 °C, respectively after 192 hours of the time exposure. On the other hand, the half life values of the two insecticides were >192 and >192 hours at 20 °C; 70.78 and 138.76 hours at 30 °C; 17.46 and 57.76 hours at 40 °C and 7.78 and 31.94 hours at 50 °C, respectively. In general, increasing temperature degrees and prolongation of exposure increase the percentage loss of insecticide. Pirimiphos-methyl had the highest thermal decomposition during the periods of experiment.

Diazinon was less stable than pirimiphos-methyl when exposed to UV-rays after three hours from application. The percentage loss of diazinon and pirimiphos-methyl insecticides after 24 hours was 61.61% and 80.33%, respectively. The half-life values of the two insecticides were 13.59 and 8.77 hours, respectively. The rate of degradation of the two tested insecticides varied according to their chemical structure, time of exposure and the wave length of UV-rays used. Pirimiphos-methyl was the most affected by UV irradiation compared with diazinon insecticide.

The tested insecticides greatly deteriorated when exposed to direct sunlight. The percentage loss of diazinon and pirimiphos-methyl were 100% after 48 hours from exposure.

The half-life values of the diazinon and pirimiphos-methyl were 1.02 and 0.50 hours, respectively. The active ingredient of the two insecticides greatly deteriorated when exposed to direct sunlight. Sunlight
was found to be more effective than UV-rays in accelerating the photo-decomposition of the insecticides, this could be due to thermal, evaporation and light intensity considerations.

INTRODUCTION

In Egypt, pesticides are applied to control economic pests during the summer season under enormous heat.

The ultraviolet component of sunlight, which varied from 240 to 400 nm, is responsible for pesticide photolysis in the environment. Both heat and light might affect the efficiency of pesticides, as measured by the duration of their residual effect.

The present study was undertaken to investigate the effect of temperature, UV-rays (short waves) and direct sunlight on the stability and degradation of diazinon and pirimiphos-methyl of the active ingredients.

MATERIALS AND METHODS

Pesticides

Diazinon (Baudin, Diazitol, Neocidol, Nuclidol): O, O-diethyl-O- (2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate.

Pirimiphos-methyl (Actellic, Actellifog, Silo Son, Blex): (O-2-diethyl -6-methyl pyrimidin-4-yl O, O dimethyl phosphorothioate).

Procedure: Aliquots of each insecticide representing one milliliter ethyl acetate containing 1000 ug (a.i.) was each spread as uniformly as possible on the surface of uncovered petridishes (5 cm i.d.)

The organic solvent (ethyl acetate) was left to dry at room temperature and the resulting deposits were divided and subjected to different treatments.

The 1st set of treatment petri dishes was exposed to 20, 30, 40 and 50 °C for 1, 4, 12, 24, 48, 96 and 192 hours inside a dark electric oven provided with a temperature regulating system.

The 2nd set was exposed to short waves of an ultraviolet lamp (254 nm) at a distance of 12 cm for 1, 2, 4, 8, 12 and 24 hours, Abdel-Baki et al. (1999).

The 3rd set was exposed to normal and direct sunlight regime for 1, 4, 12, 24 and 48 hours, maximum temperature ranged between 35 and 37 °C.
The residues which remained on the exposed surfaces were quantitatively transferred to standard glass stopper test tubes with ethyl acetate after which the solvent was evaporated under reduced pressure to dryness and the residues were ready for determination by gas liquid chromatography.

Determination: A Pye Unicam 4500 gas chromatograph equipped with a flame photometric detector operated in the phosphorus mode (526 filter) was used for determination of the tested insecticides. A Pyrex glass column (1.5 m x 4 mm I.D.) was packed with 4% S.E.- 30+6% OV-210 on gas chromosorb Q (60-100 mesh).

Temp degrees and gas flow rates were as follows:

Column temp. 230 °C.
Detector temp. 240 °C.
Injector temp. 235 °C.

Gases flow rates were 30 ml/min. for nitrogen, hydrogen and air. Retention times for diazinon and pirimiphos-methyl under these conditions were 5.25 and 7.64 min., respectively. The half-life time (t_{1/2}) for each insecticide was calculated using the equation of Moyo (Moyo et al., 1987).

\[
T_{1/2} = \frac{\ln 2}{k'} = \frac{0.6932}{k'}
\]

\[
k' = \frac{1}{t_x} \ln \frac{a}{b_x}
\]

Where:
- k' = rate of decomposition time in days
- t_x = time in days
- a = initial residue.
- b_x = residue at x time

RESULTS AND DISCUSSION

1. Thermal decomposition of tested insecticides

1.1 Diazinon insecticide

Table 1 shows the relationship between the different temperature degrees and the exposure period on the decomposition of diazinon insecticide on glass surface. Percent loss of diazinon residues reached 21.19, 44.83, 91.80, 99.96, 99.98, 99.99 and 100% after 1, 4, 12, 24, 48, 96 and 192 hours of exposure to 50 °C, respectively. The corresponding values when diazinon was exposed to 40 and 30 °C for the same periods
were 11.26, 24.36, 44.00, 75.26, 96.90, 99.98 and 99.99% and 7.96, 11.94, 14.37,
24.61, 42.47, 76.03 and 99.97%, respectively. The percent loss of diazinon at 20 °C
were 5.71, 10.71, 12.34, 16.43, 20.00, 26.44, and 39.03 % for the same periods, re-
spectively. The calculated residue half-life values of this insecticide were > 192, 70.79,
17.46 and 7.78 hours at 20, 30, 40 and 50 °C, respectively.

1.2. Pirimiphos-methyl insecticide.

Data in Table 1 clearly showed that temperature and the period of exposure
were greatly influenced the rate of pirimiphos-methyl persistence on glass surfaces.
The percent loss of pirimiphos-methyl residues was being 8.55, 15.21, 31.21, 45.82,
91.17, 96.47 and 99.90% after 1, 4, 12, 24, 48, 96, and 192 hours of exposure at 50
°C, respectively. These values were 5.34, 14.62, 27.34, 30.06, 47.12, 86.27 and
97.53% and 3.33, 11.46, 16.83, 20.61, 23.88, 30.00 and 58.45 % when pirimiphos-
methyl was exposed to 40 and 30 °C for the same periods of exposure, respectively.
The data also showed that there was no loss of pirimiphos-methyl until 48 hours of ex-
posure at 20°C, while the percent loss reached 4.21 and 11.58% after 96 and 192
hours from exposure at 20 °C, respectively.

The calculated half-life values of this insecticide were >192, 158.44, 57.76 and
31.94.51 hours at 20, 30, 40, and 50°C, respectively.

The results clearly showed that the rates of persistence of the two insecticides
were influenced by many factors, including chemical structure, vapor pressure, concen-
tration of insecticide applied, temperature degree and period of exposure. In general,
increasing temperature enhanced the rate of residues degradation. It is clear that the
percent loss of insecticide residues gradually increased with prolongation of the expo-
sure period.

From the practical point of view in the pest control program, it can be recom-
mended to use the two tested insecticides in area of dominant low temperature. Moreover, this clearly showed that the interval between successive sprays should be shorter
at high temperature and vice versa.

Pirimiphos-methyl showed a high degradation rate when exposed to high degrees
of temperature (40 and 50 °C) within the period of experiments, it is recommended
for use in areas of dominant low temperatures 20-30 °C during the winter season.

Several investigators had studied and confirmed the role of temperature in de-
gradation of insecticides, Tantawy and Hussein (1978) Abu-zahw et al. (1988) and Ab-
Table 1. Persistence of diazinon and pirimiphos-methyl insecticides under different temperature degrees.

<table>
<thead>
<tr>
<th>Time of exposure in hour</th>
<th>20 °C</th>
<th>30 °C</th>
<th>40 °C</th>
<th>50 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg</td>
<td>Loss %</td>
<td>µg</td>
<td>Loss %</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>942.65</td>
<td>5.71</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>892.65</td>
<td>10.71</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>675.59</td>
<td>13.34</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>353.65</td>
<td>16.43</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>800</td>
<td>20</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>735.51</td>
<td>26.44</td>
<td>957.62</td>
<td>4.21</td>
</tr>
<tr>
<td>192</td>
<td>809.67</td>
<td>39.03</td>
<td>884.15</td>
<td>11.58</td>
</tr>
<tr>
<td>t1/2 in hrs</td>
<td>>192</td>
<td>>192</td>
<td>70.79</td>
<td>158.44</td>
</tr>
</tbody>
</table>
Table 2. Effect of UV rays and sunlight on the degradation of diazinon and pirimiphos-methyl.

<table>
<thead>
<tr>
<th>Time of exposure in hours</th>
<th>Effect of UV rays on</th>
<th>Effect of sunlight on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg insecticide</td>
<td>µg insecticide</td>
</tr>
<tr>
<td></td>
<td>Loss %</td>
<td>Loss %</td>
</tr>
<tr>
<td>0</td>
<td>1000.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>794.040</td>
<td>29.590</td>
</tr>
<tr>
<td>3</td>
<td>701.930</td>
<td>29.800</td>
</tr>
<tr>
<td>6</td>
<td>641.180</td>
<td>35.880</td>
</tr>
<tr>
<td>12</td>
<td>541.800</td>
<td>45.840</td>
</tr>
<tr>
<td>24</td>
<td>383.820</td>
<td>81.610</td>
</tr>
<tr>
<td>t(1/2) in hrs</td>
<td>13.580</td>
<td>8.770</td>
</tr>
</tbody>
</table>
del-Baki et al. (1999)

2. Effect of UV-rays on the two insecticides

Data in Table 2 show that the decomposition percentages of diazinon and pirimiphos-methyl on glass surfaces increased gradually after exposure to UV-rays. The percent of loss for diazinon and pirimiphos-methyl were 20.59 and 13.21% after one-hour exposure to UV-rays. The decomposition percentages of diazinon increased to 29.80, 35.68, 45.04 and 61.61% and pirimiphos-methyl 20.32, 46.24, 62.45 and 80.53% after 3, 6, 12 and 24 hours of exposure to UV-rays, respectively. This showed a high degradation rate with respect to diazinon. The residue half-life values were 13.59 and 8.77 hours for diazinon and pirimiphos-methyl, respectively.

The results clearly showed that the rate of degradation of the two tested insecticides varied according to their chemical structure, time of exposure and wavelength of UV-rays. Residues were considerably degraded at different rates due to the chemical nature of each compound and the prolongation of exposure time.

In general, photodegradation was positively correlated with the exposure period. These results are in accordance with those Riskalla (1975), Murai and Igawa (1977), Elsayed et al. (1980), Abdel-Razik et al. (1982), Hegazy et al. (1982), Abu-Zahw et al. (1988), Chukwuundebe et al. (1989) and Abdel-Baki et al. (1999).

3. Effect of sunlight on the decomposition of the insecticides

Data presented in Table 2 showed that the percentage of loss for diazinon and pirimiphos-methyl were 49.38 and 66.57% after one hour of exposure to direct sunlight. The decomposition percentages of pirimiphos-methyl rapidly increased to 97.87 and 98.65% after four hours of exposure. For diazinon, the percentage loss was 99.96, 99.98 and 100% at the time of exposures of 12, 24 and 48 hours, while at the same time of exposures, pirimiphos-methyl showed 99.91, 99.97 and 100%, respectively. The residual half-life values were 1.02 and 0.8 hours for diazinon and pirimiphos-methyl, respectively. It was concluded that the residues of the tested insecticides greatly deteriorated when exposed to direct sunlight especially for longer periods.

The results obtained agreed with the findings of Marei et al. (1979), El- Sayed et al. (1980), Abdel-Razik et al. (1982), Hegazy et al. (1982), Abu-Zahw et al. (1988), Chukwuundebe et al. (1989) and Abdel-Baki et al. (1999).

Considering the time of exposure to sunlight, it was obvious that 24 hours expo-
sure seemed to be nearly decompose completely the two insecticide. Also, sunlight was more effective than UV-rays in accelerating the photodecomposition of diazinon and pirimiphos-methyl. This could be due to thermal, evaporation and light intensity considerations.
REFERENCES

Univ.
التحذير الحراري والضوئي لأشعة من الهيدرات الفسفورية العضوية

محمد السيد علي حجازي 1، شكر عبد السلام شكر 2، عبد السميع عبد القنوات 1
محمد محمد محمد يوسف 1، نيفين صالح الدين أحمد 1

1 المحاذاة المركز للمبيدات، مركز البحوث الزراعية، القاهرة، الجيزة
2 كلية العلوم، جامعة القاهرة، الجيزة

يهدف هذا البحث إلى دراسة تأثير درجات الحرارة المنتشرة على تخطيط هيدرات الأدابيازينونة والبيروموفرس-سيسيل الاستخدام في محاسبة النشر في مصر.

وأوضح النتائج أنه عند تعرض مستويات الأدابيازينون وبيروموفرس-سيسيل لدرجات حرارة مختلفة كانت النسبة المشتركة للقافلة بعد 142 ساعة هي 37.2% و 68.7% عند 20 م، 35% عند 25 م، 25% عند 30 م، 20% عند 35 م، 15% عند 40 م، 10% عند 45 م، 5% عند 50 م، 0% عند 55 م. ويعتبر النتائج أساسيًا وقابلاً للتطبيق.

أوضح النتائج أنه عند تعرض مستويات الأدابيازينون وبيروموفرس-سيسيل للمشتركة فوق القيمة الحسابية كانت نسبة القافلة بعد 142 ساعة هي 22.2% و 25% عند القافلة و&Wc، وعند القافلة و&Wc.