SOME STUDIES ON SHEEP VACCINATED WITH SMITHBURN ATTENUATED RIFT VALLEY FEVER VACCINE

HASSAN, K. E. Z., KHAI RAT A. ELIAN AND M. M. TAHA

Veterinary Serum and Vaccine Research Institute, Agricultural Research Centre, Ministry of Agriculture, Dokki, Giza, Egypt.

(Manuscript received 24 October 2000)

Abstract

This study was performed on 9 adult sheep divided into 3 groups, one group included nonpregnant vaccinated sheep, second group was pregnant vaccinated ewes and the third group was nonpregnant non-vaccinated kept as control. Some of the vaccinated animals showed a slight elevation of body temperature. Two pregnant ewes delivered normal lambs, while the 3rd ewe was aborted one month after vaccination. RVF virus was isolated from different organs of the aborted foetus. No significant changes were found in total protein, Serum Glutamic Oxaloacetic Transaminase (GOT) and Serum Pyruvic Transaminase (GPT) than values as compared with non-vaccinated control animals. However, there was significant decrease in albumin value and significant increase in globulin value than in control animals. The neutralizing antibodies were still detectable at protective level till 36 months post-vaccination and the peak was reached at the 3rd month post-vaccination. The immunoglobulins as detected by Enzyme Linked Immunosorbent Assay (ELISA) were recorded as optical density reading and the results were correlated with those obtained by Serum Neutralization Test (SNT).

INTRODUCTION

Rift Valley Fever (RVF) is a zoonotic, acute, viral disease that primarily affects domestic animals, and occasionally causes disease in humans. RVF may cause severe disease in both animals and humans with high morbidity and mortality, and exacting substantial economic loss of livestock. RVF is most commonly associated with mosquito-borne epidemics during years of heavy rainfall. An epizootic of RVF is generally observed during years, typically occurs in 5 to 20- year cycles, in which heavy rainfall and localized flooding occur. The excessive rainfall allows mosquito eggs, usually of the genus Aedes, to hatch. The mosquito eggs are naturally infected with the RVF virus, and the hatched mosquitoes transfer the causative virus to livestock on which they feed. Once the livestock is infected, other species of mosquitoes can become infected from the animals and can spread the disease. In addition, it is possible that the virus can be transmitted by other biting insects (WHO, 1998). The incubation period of RVF varies
from two to six days. There, then follows an influenza-like illness, with sudden onset of fever. The first indication of development of an epidemic is frequently the abortion of sheep. The simultaneous occurrence of numerous cases of abortion and disease in ruminants, together with disease of humans, following heavy and prolonged rainfall, is characteristic of RVF (WHO, 1998). Clinical disease has been observed in sheep, goats, cattle, domesticated Asian buffaloes, camels and humans (WHO, 1998).

RVF can be prevented by a sustained programme of animal vaccination. Both inactivated and live attenuated vaccines have been developed for veterinary use. The live vaccine requires only one dose and produced long-lived immunity (WHO / OMS, 1998). Smithburn live attenuated vaccine, widely used in Africa, is highly immunogenic and presents a suitable candidate vaccine for the control of RVF (Botros et al., 1995).

In this work, we followed-up the serologic immune response of adult sheep vaccinated with live attenuated RVF vaccine until the protective level of immune response has vanished. Moreover, determination of some serum biochemical constituents was carried out at different time intervals post-vaccination.

MATERIALS AND METHODS

Animals

Nine adult sheep (3 of them were pregnant), were used for follow-up the effect of vaccination (immune response) and other parameters.

Biological Reagents

RVF antigen

Lyophilized RVF cell lysate for IgG detection by ELISA was used (Elian and Botros, 1997).

Conjugate

Antisheep horse-reddish peroxidase. Purchased from Sigma Company.

Biochemical Kits

Total protein kit, Albumin kit, GOT and GPT kit, all were obtained from Biocon Company (Germany).
RVF vaccine

Smithburn neurotropic strain at its 102nd mouse brain passage, batch No. 10 was produced by RVF department at the Vet. Serum and Vacc. Research Institute, Abbassia, Cairo, and evaluated by Control lab. at Vet. Serum and Vacc. Research institute.

RVF virus

ZH 501, isolated from a human patient in Zagazig province (WHO, 1998), was used for SNT.

METHODS

Detection of total protein: according to Josephson and Gyfenensward (1975).
Detection of albumin: according to Webster (1974).
Detection of GOT and GPT: according to Reitman and Frankel (1957). 
Virus isolation: Isolation of the vaccinal virus from vaccinated aborted ewe was carried out (Walker et al. 1970).

Seroconversion

1. Serum neutralization test (SNT): used to detect specific neutralizing antibody against RVF virus according to the method of Walker et al. (1970).
2. Enzyme Linked Immunosorbent Assay (ELISA): used to detect IgG against RVF virus according to the method described by Voller et al. (1976).

Experimental Design

The animals were divided into 3 groups:
- Group one: included 3 non-pregnant vaccinated sheep.
- Group two: included 3 pregnant vaccinated ewes.
- Group three: included 3 non-pregnant non-vaccinated sheep, kept as control.

All groups were clinically observed till the end of experiment, and serum samples were collected for detection of total protein, albumin, GOT, GPT and specific antibody to RVF virus.
RESULTS

Four vaccinated animals showed slight elevation of body temperature (about 0.5°C) for one day (on 4th day) post-vaccination. Two pregnant ewes delivered normal lambs, while, the 3rd ewe was aborted one month after vaccination (at the 3rd month of pregnancy). RVF virus was isolated from different organs (liver, spleen and brain) of the aborted foetus, but intestine and kidney were free. No significant changes were found in total protein, GOT and GPT as compared with values of non-vaccinated control animals. There was significant decrease in albumin values and significant increase in globulin value when compared with control animals (Tables 1 & 2).

The neutralizing antibodies were detected at protective level (NI 1.7 log_{10} TCID_{50}) till 36 months; the peak was reached at the 3rd month post-vaccination (NI 3.5 log_{10} TCID_{50}), while, at 39th month post-vaccination, the level decreased to be non-protective (NI 0.9 log_{10} TCID_{50}) as shown in Table 3.

The immunoglobulins (IgG) were detected by ELISA and recorded as optical density readings, and the results correlated well with those obtained by SNT as shown in Table 4.

Table 1. Mean of total proteins, albumin and globulin in sera of sheep vaccinated with attenuated RVF vaccine as compared with controls.

<table>
<thead>
<tr>
<th>Weeks post-vaccination</th>
<th>Unit/mi sera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group of animals</td>
<td>No. of animals</td>
</tr>
<tr>
<td>G1.2</td>
<td>3</td>
</tr>
<tr>
<td>G2.3</td>
<td>3</td>
</tr>
<tr>
<td>G3.1</td>
<td>3</td>
</tr>
</tbody>
</table>

TP = total protein, A = albumin, and G = globulin.
Table 2. Mean of GOT and GPT values of sheep sera vaccinated with RVF vaccines as compared with control sheep.

<table>
<thead>
<tr>
<th>Group</th>
<th>Weeks post vaccination</th>
<th>0th</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GOT</td>
<td>unit / ml sera</td>
<td>GPT</td>
<td>GOT</td>
<td>GPT</td>
<td>GOT</td>
<td>GPT</td>
<td>GOT</td>
</tr>
<tr>
<td>GI</td>
<td>6</td>
<td>54.6</td>
<td>13.5</td>
<td>53.3</td>
<td>14</td>
<td>56.1</td>
<td>13.6</td>
<td>56.1</td>
</tr>
<tr>
<td>G2</td>
<td>6</td>
<td>54</td>
<td>11.8</td>
<td>53.3</td>
<td>12</td>
<td>54</td>
<td>12.8</td>
<td>55</td>
</tr>
<tr>
<td>G3</td>
<td>6</td>
<td>53.6</td>
<td>12.3</td>
<td>54</td>
<td>12.4</td>
<td>54.6</td>
<td>12.3</td>
<td>54.3</td>
</tr>
</tbody>
</table>

Table 3. Mean of neutralizing indices in sera of sheep vaccinated with attenuated RVF vaccine as well as control sheep.

<table>
<thead>
<tr>
<th>Group of animals</th>
<th>Day</th>
<th>Weeks</th>
<th>Mean of neutralizing indices</th>
<th>Time post-vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of animals</td>
<td></td>
<td></td>
<td></td>
<td>Months</td>
</tr>
<tr>
<td>Zero</td>
<td>1st</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td>GI</td>
<td>6</td>
<td>0.5</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>G2</td>
<td>6</td>
<td>0.6</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>G3</td>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 4. Mean of ELISA optical density reading in sera of sheep vaccinated with attenuated vaccine as compared with control sheep.

<table>
<thead>
<tr>
<th>Group of animals</th>
<th>Day</th>
<th>Weeks</th>
<th>Mean of ELISA optical density</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of animals</td>
<td></td>
<td></td>
<td>Time post-vaccination</td>
</tr>
<tr>
<td>Zero</td>
<td>1st</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>GI</td>
<td>6</td>
<td>0.045</td>
<td>0.110</td>
</tr>
<tr>
<td>G2</td>
<td>6</td>
<td>0.042</td>
<td>0.110</td>
</tr>
<tr>
<td>G3</td>
<td>6</td>
<td>0.040</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Cut off = 0.09 reading on plate reader at 492 nm wavelength.
DISCUSSION

In the present studies, elevation of body temperature of vaccinated sheep (0.5°C) on the 4th day post-vaccination, agreed with Gihan et al. (1996) and Hassan (1998) who reported that sheep vaccinated with live attenuated RVF vaccine showed elevated body temperature post-vaccination as post-vaccination reaction. The abortion occurred in one ewe at the 3rd month of pregnancy, which agreed with Ibrahim (1996), but disagreed with Gihan et al. (1996) and Hassan (1998), probably due to the less number of animals used in this study. Non-significant changes were found in the total protein, GCT and GPT as compared with control values which agreed with El-Sawalhy et al. (1997) and Mouaz et al. (1998) but disagreed with Gihan et al. (1993) who reported an increase in total serum protein post-vaccination with attenuated RVF vaccine. Albumin values showed significant decrease than that of controls, while, globulin value showed significant increase than that of controls that agreed with Hassan (1998), but disagreed with Mouaz et al. (1998) who reported no significant changes. Duration of immunity, which, was detected by SNT and ELISA tests, revealed that the immunity in protective serological limit lasted for 36 months post-vaccination that agreed with WHO / OMS (1998). This result led to the conclusion that approximately one dose of live attenuated RVF vaccine is sufficient for protection of sheep against the disease during their life.
REFERENCES


بعض الدراسات على الأغذية الحمضية بلقاح حمى الوادي المتصدع
المضطفع مدة سمر برك
كريم الدين زكي حسن، خيرات عبد الجواد عليان، محمد محمود طه
معهد بحوث الأمراض واللقاحات بالعباسية، مركز البحوث الزراعية، وزارة الزراعة،
الدقى، جيزة، مصر.

تمت هذه الدراسة على عدد 9 أقنام قسمت إلى ثلاث مجموعات، المجموعة الأولى حصلت
باللقاح المضطفع والمجموعة الثانية كانت مشوار وحصدت بنفس اللقاح والمجموعة الثالثة
تركت كضابط التجربة. أظهرت النتائج إنتاجاً طيفياً في درجة الحالة لبعض الأغذية المضفعة
وحصده حالة إيجابية واحدة من مجموعة الأغذية المضفعة وتم منع القيروس من إضاعة
المحمولة. بالنسبة للتحاليل البيوكيميائية التي أجريت على العصا لم يحدث تغيير في قيمة
الأحماض الكيل للمجموعة الثالثة وكذلك قيم الأنزيمات الدالة على وظائف الكبد ولكن كانت قيمة
الأحماض الدهنية أقل وقيمة الفيتامينات أعلى من مجموعها في مجموعة ضابط التجربة. بالنسبة
للاختبارات السيرولوجية أظهرت النتائج إرتفاع مستوى الأجسام المناعية في الحيوانات المضفعة
أنصح إلى أعلى مستوى في الشهر الثالث بعد التحصين واستمرت الأجسام المناعية بنسبة كبيرة
لوتية الأغذية ضد المرض حتى الشهر 36 بعد التحصين.