PERFORMANCE OF CERTAIN GROUND AND AERIAL APPLICATION TECHNIQUES AGAINST PIERCING AND SUCKING INSECTS IN COTTON CULTIVATIONS

M.A. HINDY1, E.A. GOMMA2, L. GABIR3 AND A.E. AMMAR4

1 Plant protection Research Institute, Agriculture Research Centre, Dokki, Egypt.
2 Plant protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
3 Plant protection Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.

(Manuscript received 31 March 1998)

Abstract

Eleven techniques represented almost spraying and dusting application methods common in Egypt were tested to control sucking insects on cotton cultivations by using certain insecticides recommended from Ministry of Agriculture in Egypt. These insecticides were Deltanet, Prempet, carboron and Sulfur during seasons 1993, 1994. In the early season, three types of ground spraying equipment were used. These sprayers were semco, Tapa, CP-3 sprayer as target and drift spraying technique by using Deltanet against aphids. The target spray revealed 99.5-100% reduction in number of insects with the comparison of drift spray technique which caused 75% reduction.

The season remain, the used techniques were categorized into three groups according to their capabilities in the mentioned respects as good, moderate and improper techniques for controlling sucking insects in cotton plantations.

A. The first group (Good techniques): Deltanet and prempet caused 80% reduction from population insects by using semco sprayer and CP-3 sprayer as target spraying techniques. The droplet spectrum ranged between 15-58 droplets/cm2 with diameter 65-100 µm (VMD). The percentage of spray lost on ground was 25% from the total spray volume.

B. The second group (Moderate techniques): Deltanet caused 77% reduction from population insects by using semco, CP-3 and conventional sprayer. Although there was not droplets on lower surfaces of cotton plants, could be observed, but might be settling droplets less than 25 µm. Produced by conventional sprayer which could not be counted through measuring technique used.

C. The third group (Improper techniques): Three insecticides caused 12-47% reduction from insect population by using semco sprayer, while the same insecticide revealed 60% reduction from insect population by using helicopter. The percentage of spray lost on ground was 44% for ground equipment as target spraying technique and helicopter.

In case of sulfur dust by ground equipment or helicopter a 32% reduction from population insects was done with the same level mentioned for spray lost on ground. Generally, it was recommended to apply Deltanet insecticide which has a spectrum of droplets within 65-100 micrometers (VMD) in numbers not less than 15 droplets/cm2 on the lower sides of leaves with enough distribution homogeneity.
INTRODUCTION

Cotton, being particularly attractive to pests traditionally received by for the highest number of treatment per season, thus exerting intensive selection pressure on all insects present, primary as well as secondary targets. Sucking insects were considered secondary pests in the seventies due to the general usage of OP's against bollworms and cotton leaf worms, which kept them in a minor role, but selection gradually produced resistance strains. Also, misapplication was responsible about attaining unsatisfactory pest control operation. In Egypt, the infestations of sucking insects to cotton plants usually starts in the early season during April, but their population was much higher during July and September (Samy 1963), Hassanien et al (1971). Now, the chemical control of sucking insects in cotton plantations could be considered as one of the essential tools in this concern, through the frame of the integrated pest management.

In Egypt majority of interest was directed to the type, dosage etc of insecticides used, while a lesser attention was given to the application methods. A comparative study on the efficiency of certain ground sprayers was carried out by Afifi (1971), Womac et al (1989) and Hindy (1992), who recorded significant variation in the deposit due to different arrangement of the nozzles, spray technique and rates of application. This work concentrates on studying the main spraying and dusting techniques applied either by ground machine or by aircraft at Sharkeya/Gharbeya Governorates. Trails were done during early, mid and late cotton seasons (April-July-September), 1993-94, using various insecticides recommended by the Ministry of Agriculture. Appraisal of the tested techniques was carried out with the use of qualitative and bilingal assessments in order to spot lights on its bioefficiency and environmental side effect during various cotton ages.

MATERIALS AND METHODS

The Application techniques tested

A. Ground spraying

2. Semo spraying: applying drift spray at 2.3 lit./fed.
3. CP-3 spraying: applying target spray at 22.0 lit./fed. Cooper Pegler Co.
4. CP-3 sprayer: applying drift spray at 18.0 lit./fed. Ltd. West Sussex, U.K.
5. TAPA sprayer: applying semi-drift spray at 13.0 lit./fed. Tifa Co. Ltd.
6. TAPA sprayer: applying semi-drift spray at 23.0 lit./fed. Millington U.S.A.
7. TAPA Sprayer: applying semi-drift spray at 27.0 lit./fed.
8. Conventional sprayer applying target spray at 227.0 lit./fed. Local manufacture Egypt.

B. Ground dusting

Arimitsu industry Co., Ltd. Japan.

C. Aerial spraying

D. Aerial dusting

11. Mi-2 helicopter: applying target dusting at 10.0 kg./fed.

The Used Insecticides and dosages

1. Deltanet 40% EC. (Furathio carb): full, and quarter of the recommended dose (0.400 lit./fed.);
2. Catabron (mixture of curacron-profenofos-47.3% and I.G.R. 2.6%): half recommended dose (0.750 lit./fed.);
3. Premper (mixture of : Meothrin-Fenpropothrin and Admiral (IGR): Pyriproxyfen: full dose (0.300 lit./fed.);
4. Sulfur: full recommended dose of agricultural sulfur powder (10.0 kg/fed.).

Methods of determination and evaluation of the tested application techniques

1. Qualitative technique for spray coverage: By means of Bendakote cards mounted on three levels of cotton plants and metallic receptors plus one card on a wire holder positioned in ground between plants. (Hindy 1989). The used dyes were nigrosine (0.01%) at early season and crystal violet (0.01%) plus 40 ml of vinegar per litre - as recommended by the Ministry of Agriculture in order to acidify the
Dyed spots were counted and measured by the monocular lens "struben" having a magnification of x 15. Data were corrected on basis of the spread factor and calculated to obtain the VMD and N/cm². The size measuring accuracy is ± 25 micrometers. (Anonymous 1978) and (Clay Geigy 1990).

2. Qualitative technique for dust coverage: By means of a blakcrough cards, at same distributional arrangement. The sulphur particles were counted and measured by the stuben lens. Figures 1, 2 and 3 shows the spray/dust coverage on cotton plant and that lost on ground using various ground & aerial application techniques.

3. Bioassay technique: Levels of infestation of aphids, whiteflies and jassid to cotton plants were determined on 25 plants selected at random forming the longest cross lines, inside each experimental plot. In mature plants, insects were counted on top, middle and bottom levels of the observed plants. According to the economic threshold of cotton pest's in Egypt El-Hamakey et al (1993), cotton fields infested with the following minimum number of individuals/colonies should be subjected to chemical application:

- **Aphid**: At early season, seven colonies per seedling (two leaves of about 20 cm² area) with 7-10 individuals/colony and 15 colonies/leaf of mature plant;
- **Jassid & whitefly**: Ten nymphs and/or adults per one leaf of cotton plant. Counts were performed with the use of magnifying glass (X10) eight times immediately before application, one day after application and then 3, 5, 7, 9, 11 and 14 days, successively. Records were corrected by Henderson & Telton (1955) equation and were subjected to analysis of variance.

RESULTS AND DISCUSSION

The efficiency of the tested techniques was evaluated qualitatively with knowledge of the deposited spectrum of the insecticide spray droplets on cotton plants, specially on lower surfaces of plants levels, the preferable habitat of the target insect and biologically on basis of reduction of piercing and sucking insects infestation in cotton fields. It is worthy to mention that the relationship and correlation between spray quality and bioefficacy of toxic chemicals on piercing and sucking insects was not given the sufficient attention in the literature and in Egypt, in particular. Data
presented in Table 1 indicated the presence of quite high numbers of aphids on upper, middle and lower parts of cotton plants ranging from 10-30 individuals/cm² in the untreated plots during both seasons. However, considerable numbers of whitefly nymphs, ranged between 12-24 nymphs/cm² were recorded on the upper, middle and lower parts of cotton plants during the late season of 1993 and the mid season 1994. Jassid infestation ranged between 2-3 individuals/cm² in both seasons. This finding may give confidence to the experimental results.

Table 1 indicates the mean number of insects/cm² counted on the lower surface of cotton leaves before spraying, as an approximate structure model of infestation. Figures 1-9 demonstrates the initial and residual activities of the tested application techniques against aphid, jassid and whitefly during early, mid and late seasons:

The tested application techniques could be arranged in descending order on basis of the obtained spray quality and the bioassay results, as follows:

1. First group (A): more than 60%, as good techniques.
2. Second group (B): 50% -80%, as moderate techniques.
3. Third group (C): less than 50%, as improper techniques.

It seems that the tested insecticides could be arranged in descending order, according to their effect on the treated insects, on cotton, within the criteria of this work, as follows:

- Deltanet-Premset-Cabaron-Sulfur powder.

At early season, the percentage of aphids reduction ranged 74% - 100% using full dose of deltanet with different ground sprayers, various spray types and rates of application (2.3-27.0 lit./fed.). The percentage of spray lost on ground represented 16-34% from the total bulk. Concerning the spectrum of droplets deposited on the lower surface of seedling leaves, a number of 20-132 droplets sized between 50 and 102 micrometers (VMD) was recorded.

On the other side, the mean number of aphid counted on this target was 7 individuals/cm².
Data in Table 2 indicate that the role played by the tested techniques might be considered as a secondary role after the type and dosage of the selected insecticide which was the dominant factor affecting aphid control on seedlings.

At mid and late seasons of cotton growth, a considerable role was played by the tested application techniques, beside the traditional influence of toxic chemicals. For example, using a full dose of deltanet insecticide with Semco sprayer at 6.0 lit./fed. and conventional sprayer at 227.0 lit./fed. caused 100% and 12% reduction of insect, respectively, which emphasizes the spraying technique role.

In the first group which classified as GOOD TECHNIQUES, Semco (6.0 lit./fed.) and CP-3 (22.0 lit./fed.) were tested as target sprayers, with deltanet and premet insecticides, and gave 100% reduction (for deltanet) and 84% (for premet). The droplet spectrum was 15-58 droplets of 64-96 μm (VMD) per square centimeter of cotton leaves.

The spray lost on ground between plants represented 13-39% from the total spray.

In the second group which considered as MODERATE TECHNIQUES ground and aerial spraying techniques were included. Semco (2.3 lit./fed.) and CP-3 (18.0 lit./fed.) were tested as drift sprayers with deltanet insecticide and gave a dose percentage of 77% reduction of treated insects. The droplet spectrum ranged 6-18 droplets of 73-110 μm/cm2 and the amount lost on ground was approximately 48%.

Semco sprayer (6.0 lit./fed.) caused 52% insects reduction with half dose of catabron insecticide and 12 droplets of 96 μm/cm2. Mi-2 helicopter sprayed half dose of catabron caused more reduction (60%) of insects with a spectrum of 21 droplets of 245 μm/cm2.

The unexpected result of mortality was given by the conventional sprayer (227 lit./fed.) using deltanet insecticide, where no droplets were recorded on the lower surface of cotton leaves at mid season. Such a result might be attributed to the influence of fine droplets (less than 25 μm) which could not be counted. The mean percentage of spray lost on ground by means of the tested techniques was 40%, except for CP-3 sprayer which caused 57% loss.

The last group of IMPROPER TECHNIQUES included some ground sprayers and dusting technique either by ground or aerial means. In spite of spraying catabron in-
secticide with CP-3 sprayer at 22.0 ltr./fed., 48% reduction of insects was obtained with a little number of droplets (8 droplets/cm²) of 77 micrometers.

By means of conventional sprayer—having no deposit on lower surface leaves: 47% and 37% insect’s reduction were obtained using premix and catabron insecticides, respectively.

A close reduction of 32% was obtained with Arimitsu duster and Mi-2 helicopter/dusting version, applying agricultural sulfur powder, at 10 kg/fed. The spectrum of particles deposits on lower surface of cotton leaves ranged 52-77 particles sized 10-90 μm. The lowest reduction of treated insects (12%) was given by the conventional sprayer with the use of deltanet insecticide, during late season.

The general means of losses of spray/dust on ground were 31% and 43% for (TAPA/Semco/CP-3) and conventional sprayer /Mi-2 helicopter, dust/Arimitsu duster, respectively.

On basis of the obtained data, the optimum size of droplets recommended for controlling insects of cotton could be ranged between 65 and 100 micrometers (VMD) with numbers not less than 15 droplet/cm² on the lower side of leaves of all plant levels, taking into consideration a suitable distribution homogeneity. These results seem to be similar to such results mentioned by Smith and Goodhue (1942), Hinei (1964), Gabir et al (1991) and Hindy (1992).
Table 1. General mean number of insects/cm², counted on the lower surface of cotton leaves before spraying.

<table>
<thead>
<tr>
<th></th>
<th>early</th>
<th></th>
<th>1993</th>
<th></th>
<th>1994</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mid</td>
<td>Late</td>
<td>Mid</td>
<td>Late</td>
<td>Mid</td>
</tr>
<tr>
<td>Level</td>
<td>Seedling</td>
<td>upper</td>
<td>lower</td>
<td>upper</td>
<td>lower</td>
<td>upper</td>
</tr>
<tr>
<td>Aphid</td>
<td>early</td>
<td>7</td>
<td>23</td>
<td>15</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 2. Illustrated spray coverage, percent reduction of aphids and the percent losses on ground at cotton seedlings as produced by certain ground equipments at early season with Del-tanet insecticide.

<table>
<thead>
<tr>
<th>Sprayer</th>
<th>% reduction of aphids</th>
<th>Spray type</th>
<th>Spraying volume (lit./fed.)</th>
<th>Droplets (N/cm²/VMD)</th>
<th>% losses on ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Samco</td>
<td>100</td>
<td>target</td>
<td>6.0</td>
<td>53/50</td>
<td>26</td>
</tr>
<tr>
<td>2. TAPA</td>
<td>100</td>
<td>Semi-drift</td>
<td>13.0-27.0</td>
<td>132/102</td>
<td>29</td>
</tr>
<tr>
<td>3. CP-3</td>
<td>98</td>
<td>target</td>
<td>22.0</td>
<td>20/74</td>
<td>34</td>
</tr>
<tr>
<td>4. Semco</td>
<td>76</td>
<td>drift</td>
<td>2.5</td>
<td>23/85</td>
<td>16</td>
</tr>
<tr>
<td>5. CP-3</td>
<td>74</td>
<td>drift</td>
<td>18.0</td>
<td>61/71</td>
<td>17</td>
</tr>
</tbody>
</table>
Table 3. Illustrated spray coverage, percent reduction of sucking insects and the percent of losses on ground at mid and late seasons as produced by certain aerial and ground equipments with different insecticides.

<table>
<thead>
<tr>
<th>Group</th>
<th>Serial No.</th>
<th>Sprayer</th>
<th>Reduction (%)</th>
<th>Spray vol. (Lit.fed.)</th>
<th>Spray (1) type</th>
<th>Insect (2)</th>
<th>Season</th>
<th>Drops(3) (ND)</th>
<th>Losses (4) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Semco</td>
<td>100</td>
<td>6.0</td>
<td>T</td>
<td>Dlt.</td>
<td>mid</td>
<td>58/96</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CP-3</td>
<td>100</td>
<td>22.0</td>
<td>T</td>
<td>Dlt.</td>
<td>mid</td>
<td>15/64</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Semco</td>
<td>85</td>
<td>6.0</td>
<td>T</td>
<td>Prm.</td>
<td>late</td>
<td>17/68</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CP-3</td>
<td>82</td>
<td>22.0</td>
<td>T</td>
<td>Prm.</td>
<td>late</td>
<td>17/90</td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>Conv.</td>
<td>78</td>
<td>227.0</td>
<td>T</td>
<td>Dlt.</td>
<td>mid</td>
<td>00/00</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Semco</td>
<td>77</td>
<td>2.3</td>
<td>D</td>
<td>Dlt.</td>
<td>late</td>
<td>9/73</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>CP-3</td>
<td>76</td>
<td>18.0</td>
<td>D</td>
<td>Dlt.</td>
<td>late</td>
<td>18/110</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Mi-2</td>
<td>60</td>
<td>10.0</td>
<td>T</td>
<td>Ctb.</td>
<td>mid</td>
<td>21/245</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Semco</td>
<td>52</td>
<td>6.0</td>
<td>T</td>
<td>Ctb.</td>
<td>mid</td>
<td>12/96</td>
<td>33</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>CP-3</td>
<td>48</td>
<td>22.0</td>
<td>T</td>
<td>Ctb.</td>
<td>mid.</td>
<td>8/77</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Conv.</td>
<td>47</td>
<td>227.0</td>
<td>T</td>
<td>Prm.</td>
<td>late</td>
<td>00/00</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Conv.</td>
<td>37</td>
<td>227.0</td>
<td>T</td>
<td>Ctb.</td>
<td>mid</td>
<td>00/00</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Mi-2</td>
<td>34</td>
<td>10.0*</td>
<td>T</td>
<td>Slf.</td>
<td>mid</td>
<td>77/16-90</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Arititsu</td>
<td>30</td>
<td>10.0*</td>
<td>T</td>
<td>Slf.</td>
<td>mid</td>
<td>52/10-90</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Conv.</td>
<td>12</td>
<td>227.0</td>
<td>T</td>
<td>Dlt.</td>
<td>late</td>
<td>00/00</td>
<td>44</td>
</tr>
</tbody>
</table>

Notes:
1. T: target spray; D: drift spray.
2. Dlt.: Deltanet; Prm.: Premset; Ctb.: Catabron; Slf.: Sulfur
3. Spectrum of droplets/particles deposited on lower surface of cotton leaf N: Number/cm², D: Size of droplet (VMD)/ Particle, micrometer.
4. Percentage of spray lost on ground (*) kg/fed.
Fig. 1. Spray coverage on cotton seedlings and spray lost on ground as produced by certain ground equipment at early season 1993 using full dose of Deltanet insecticide.
Fig. 2. Dust coverage on cotton plants and dust lost on ground as produced by ground duster "Arimitsu" and (Mi-2) helicopter "dusting version", at 10 kilogram sulfur per feddan.
Fig. 3. Spray coverage on cotton plants and spray lost on ground, as produced by certain ground and aerial spraying applications at mid & late seasons (1993/94) using different insecticides.
Fig. 4. Mean of initial and residual activities of Deltanet against aphids during early season 1993 with the use of ground spraying techniques.
Fig. 5. Mean of initial and residual activities of Cactoblastis against sucking insects during mid season 1994 with the use of ground and aerial application techniques (target spray).
Fig. 6. Mean of initial and residual activities of Deltanet against aphids and jassids during mid season 1993 with the use of various ground application techniques (target spray).
Fig. 7. Mean of initial and residual activities of agricultural sulfur powder against aphids during mid season 1984 with the use of ground and aerial application techniques (target spray).
Fig. 8. Mean of initial and residual activities of Deltanet against aphids and jassids during late season 1993 with the use of various ground application techniques.
Fig. 9. Mean of initial and residual activities of Prempet against sucking insects during late season 1993 with the use of various ground application techniques (target spray).
REFERENCES

دراسات مقارنة بين بعض تقنيات التقطيعات الأرضية والجوية ضد الحشرات القاحلة باستخدام الديدان المشتركة على القطاع

محمد عبد العزيز شمالي، المهندس، أحمد، إبراهيم، جبر

1- تقنيات تقطيعات الأراضي
2- تقنيات تقطيعات الجغرافية
3- تقنيات تقطيعات الجغرافية
4- تقنيات تقطيعات الجغرافية
5- تقنيات تقطيعات الجغرافية

أما نسبة الفاعل بين النباتات فكانت حوالي 42٪ للرشادات الأرضية ذات أسلوب الضحية والطائرة الهليكوبتر.

المجموعة الثالثة ج. (تقييم غير مناسبة): حققت الرشاشة التقليدية فشلاً في أمداد المفترضات في حدود 73-27٪ باستخدام ثلاثة مجموعات مختلفة وكانت نسبة الفاعل أيضًا في حدود 22-33٪. أما استخدام الشعير سواء بالرشاشة الأرضية أو طائرة الهليكوبتر فقد حقق فشلاً في أعداد المفترضات في حدود 12-22٪ مع نفس المستوى السابق للطائرة.

وإلى وجه العكس يمكن القول أن السم المتساوي لجرعات الأرض يمكن التوصية به عند مكافحة هذه المفترضات على الفنلن يمكن أن ينصح بجرعة 2-3 ميكرومليلتر. على أن اتخاذ هذه الجرعة من 10-15٪ على السطح السفلي لوراق الفنلن مع الأخذ في الاعتبار النظام في توزيع هذه الجرعة.

النسبة في توزيع هذه الجرعات.